[3.16] Use arrays with rank greater than 2

(This documentation is taken from the TI89/92+ tip list, maintained by Doug Burkett. For the complete
tip list, see http://www.geocities.com/TI_TipList/)

The 89/92+ can manipulate 1-dimensional data structures (lists and vectors), and 2-dimensional data
structures (matrices and data variables). The number of dimensions is called the rank. Lists and
vectors have a rank of 1. Matrices and data variables have a rank of 2. Matrices with rank greater than
two are useful in many cases. For example, arrays of rank 3 can represent fields and other physical
models. Arrays of rank 3 and 4 can be used to represent tensors.

This tip shows how to create and store arrays of any rank on the 89/92+, and how to store and recall
elements of those arrays. It also shows how many built-in list functions can be used to manipulate
high-rank arrays, and gives a program that finds the transpose of a rank-3 array.

| use the built-in list data structure to store the arrays, because a list can represent an array of any
desired rank. First, consider a 3-dimensional array with dimensions {d,, d., ds}. An element's location in
this array is defined as {ai, a,, as}, where

l<aq<dq l<ap<dy l<ag<dj

For example, a 2x3x4 matrix would have d = {2,3,4}, and an element in the matrix might be located at a
={2,1,3}.

To create an array mat1 with all zero elements, use
newlist(dikdy*ds)>matl
For example, to create a 2 x 3 x 4 array, use

newlist(24)-matl

The array elements are saved in the list such that the last index changes most rapidly as we move
towards the end of the list. If we have a 2x2x2 array, and we label the elements as €a1 .23, then the list
would look like this:

{€e111 €112 €121 €122 €211 €212 €221 €222}
For a particular element location {ai, a,, as}, we can find the corresponding list element index k from
k=ag +(a2—1)d3 +(a1—1)d2d3 [1]

This can be expanded and factored to eliminate one multiply, and access each variable only once, like
this:

k:d3(d2(a1—1)+a2—1)+a3 (2]

The routines to save and recall elements to a 3-dimensional list are called m3sto() and m3rcl(). m3sto()
looks like this:

m3sto(v,1,d,m)
Func
o©(value,location{},dim{},matrix{})

Page 1



©Store value in 3D matrix
©l120ct@@ dburkett@infinet.com

vom[d[3]*(d[2]*(1[1]1-1)+1[2]1-1)+1[31]]
m

EndFunc
where

v is the value to store in the array

I is a 3-element list that specifies the element location as {ai, a., as}
d is a 3-element list that specifies the list dimensions as {d., d,, ds}
m is the array list or the name of the array list

ma3sto() returns the original array m with value v stored at location /.

For example, if we want to put 7 at location {1,2,3} in array mat1, which has dimensions 2 x 3 x 4, then
use this:

m3sto(7,{1,2,3},{2,3,4} ,matl)->matl

To recall an array element, use m3rcl():

m3rc1(1,d,m)

Func

©(location{},dim{},matrix{})
©Recall element from 3D matrix
©l120ct@@ dburkett@infinet.com
mld[3]1*(d[2]*(T[1]1-1)+1[2]1-1)+1[31]]

EndFunc

where

I is a 3-element list that specifies the element location as {ai, a,, as}
d is a 3-element list that specifies the list dimensions as {d., d,, ds}
m is the array list or the name of the array list

ma3rcl() returns a scalar result. To get the element at location {1,2,3} in a 2 x 3 x 4 array mat1, and save
it in the variable var1, use

m3rcl({1,2,3},{2,3,4},matl)>varl

The index formula can be extended as needed for arrays of higher dimensions. For example, for a
4-dimensional array, the index formula is

k=ay+(ag-1)dg +(ap-1)d3ds +(ag - 1dpdzdy (3]
This is expanded and factored to
k=dy(d3(dp(ag - +ay-1)+ag-1)+ay [4]

This index formula is coded in routines m4sto() and m4rcl(), which are not shown here but are included
in the tip list code file tlcode.zip. The calling arguments are identical to m3sto() and m3rcl(), but note

Page 2



that the the location and dimension lists have dimension 4, since the routines work on a 4-dimensional
array.

In general, for an n-dimensional array, you will sum nterms to find k. The terms are

k=an+ (1st term) [5]
(an—1 —L)dn + (2nd term)
(ap_p -1)dnd_q1 + (3rd term)
(ap—g -1)dndp_1d— + (4th term)
(an_4 - 1)dndn_1d n_zdn_3 +... (5th term)

To find the simplified form of the sum for arrays with rank greater than 4, use equation [4] as a pattern.
Begin by writing a nested product of the 'd' terms, beginning with d,, and stop when you reach d,. I'll
use a 5-dimension array as an example, and the simplified form looks like this, so far:

k =ds5(d4(d3(do(...
Next, start adding ax - 1 terms, and closing the parentheses as you go. Begin with a;:
k=ds5(ds(d3(da(@g - 1) +...
and continue until you reach an.i:
k=dg(dg(d3(dp(a; ~1)+ap —1)+ag-1)+az - 1)..
and finally add the a, term to the nested product:
k=d5(ds(d3(dp(a; -1)+ay -1)+ag—-1)+a, —1)+a5
This is the simplified form.

This function shows the general expression to find the list index k for an element location {a;,a,,...,an}
for an array of dimension {di,d,,...dn}:

mrankni(a,d)

Func

©({loc},{dim}) return index

©Return 1ist index for array element

©3@nov@@/dburkett@infinet.com; based on expression by Bhuvanesh Bhatt
(when(i#dim(a),(a[il-1)=*11(d[j],j,i+1,dim(d)),a[i]),i,1,dim(a))

EndFunc
For example, to find the list index for the element at {1,2,3} in a 3x3x3 array, use
mrankni({1,2,3},{3,3,3})

which returns 6, meaning that the element at {1,2,3} is the 6th element in the list.

Page 3



This function can be used for arrays of any rank, but it is much slower than the direct implementations
given above. For a 4x4x4x4 array, the direct expression evaluates in about 0.037 seconds to find the
list index k, while the general expression takes about 0.208 seconds.

Even though the general expression is slow, it is useful to find a symbolic expression for the list index.
For example, to find the index expression for a rank-5 array, set

{a[l],a[2],a[3],a[4],a[5]}~a
{d[1]1,d[21,d[3]1,d[4],d[5]}~d

Then, executing mrankni() returns

ab5+(a[4]+a[3]*d[4]+a[2]*d[3]*d[4]+a[1]*d[2]*d[3]*d[4]-
((d[2]1+1)*d[3]+1)*d[4]-1)*d[5]

The expression is not optimized in this form but it can be optimized by factoring on d with factor():

factor(a5+(a[4]+a[3]1*d[4]+a[2]*d[3]1*d[4]+a[1]*d[2]*d[3]*d[4]-
((d[2]+1)*d[3]+1)*d[4]-1)*d[5],d)

which returns the optimized form

(((d[21*(al[11-1)+a[2]1-1)*d[3]1+al[3]1-1)*d[4]1+a[4]-1)*d[5]+a[5]

For some array operations, you may need to find the array element address {a}, given the list index.
The three routines below implement this function. m3aind() finds the element address for a rank-3
array, and m4aind() finds the address for a rank-4 array. mnaind() finds the address for an array of any
rank. It is slower than m3aind() and m4aind(), but obviously more general.

Find element address for a rank-3 array:

m3aind(i,d)

Func

©(index,{dl1,d2,d3}) return {al,a2,a3}
©oRank 3 matrix

©250ct@@ dburkett@infinet.com

local al,a2

intdiv(i-1,d[2]*d[3])+1=al
intdiv(i-1-(al-1)*d[2]*d[3],d[3])+1-»a2
{al,a2,i-d[3]*(d[2]*(al-1)+a2-1)}

EndFunc

Find element address for a rank-4 array:

mdaind(i,d)

Func

©(index,{dl1,d2,d3,d4}) return {al,a2,a3,a4}
©oRank 4 matrix

©250ct@@ dburkett@infinet.com

local al,a2,a3

Page 4



intdiv(i-1,d[2]1*d[3]*d[4])+1+al
intdiv(i-1-(al-1)*d[2]*d[3]*d[4],d[3]*d[4])+1=a2
intdiv(i-1-((al-1)*d[2]*d[3]*d[4]+(a2-1)*d[3]*d[4]),d[4])+1~a3
{al,a2,a3,i-d[4]*(d[3]*(d[2]*(al-1)+a2-1)+a3-1)}

EndFunc

Find element address for array of any rank:

mnaind(i,d)

Func

emnaind(i,dims) returns the array location of ith 1ist element
©Bhuvanesh Bhatt, Nov 2000

Local j,k,1,jj,a,dd
dim(d)->dd
1-d[dd+1]
1+dd-dd
true-jj
For 1,1,dd

dl11-k

If getType(k)#"NUM" then

false=>jj

Exit

EndIf
EndFor
If getType(i)="NUM" and jj and i>product(d):Return {}
For 1,1,dd-1
when(1£1,intDiv(i-1-Z((a[jI-1)*n(d[jjl,jj,j+1,dd),j,1,1-1),0(d[k],k,1+1,dd)),int
Div(i-1,m(d[jjl,jj,2,dd)))+1>a[1]
EndFor
a

EndFunc

As an example, use m3aind() to find the element address of the 7th element of a 3x3x3 array:
m3aind(7,{3,3,3}) returns {1,3,1}

This example for m4aind() finds the 27th element of a 4x4x4x4 array:
mdaind(27,{4,4,4,4}) returns {1,2,3,3}

This example for mnaind() finds the address for the 40th element of a 5x4x3x2x1 array:
mnaind(46,{5,4,3,2,1}) returns {2,3,2,2,1}

Note that mnaind() returns an empty list if an error condition occurs; your calling program can test for
this condition to verify proper operation.

mnaind() is especially useful for finding the general expression for the addresses of elements for arrays
of any rank. For example, use this call to mnaind() for a rank-5 array:

Page 5



mnaind(k,{d[1]1,d[2]1,d[31,d[4]1,d[51})

This will only work properly if k and the list d are not defined variables. The expression returned is quite
lengthy (and not shown here), but it /s correct.

The 89/92+ do not have built-in functions for higher-dimension arrays, but the simple list storage
method means that simple array operations are trivial. These examples show operations on two arrays
m1 and m2, with the result in array m3. k is a constant or expression. The comment in parentheses
shows the equivalent built-in 89/92+ array function. In general, m1 and m2 must have the same
dimensions.

Add two arrays (equivalent to .+) ml+m2-m3
Add an expression to each element (equivalent to .+) k+ml-m3
Subtract arrays (equivalent to .-) ml-m2-m3
Subtract an expression from each element (equivalent to .-) ml-k-m3
Multiply array elements (equivalent to .*) ml*m2-m3
Divide array elements (equivalent to ./) ml/m2-m3
Multiply array elements by an expression (equivalent to .*) k*ml-m3
Divide expression by array elements (equivalent to ./) ml/k->m3
Negate array elements -ml-m3
Raise each array element to a power ml~rk->m3
Raise each m1 element to m2 power () ml*m2 -m3
Raise an expression to each element m1 power () k*ml-m3
Take the reciprocal of each element 1/ml->m3
Find the factorial of each integer element ml!->m3
Find the sine of each element sin(ml)->m3

(also works for cos(), In(), etc)

Differentiate each array element with respect to x d(ml,x)->m3

In general, more complex operations may be handled by nested for-loops that manipulate each array
element. Or, in some cases, it is more efficient to process the list elements in sequence. The function
below, transpos(), shows this approach.

transpos(arr,dims,il,i2)

Func

o©Example that transposes a rank-3 array on indices il and i2
©Bhuvanesh Bhatt (bbhattl@towson.edu), Nov2000

Local i,tmp,arr2,dims2

If max(il,i2)>dim(dims) or min(il,i2)<@:Return "Error: invalid indices"

newlList(dim(arr))=sarr?2

Page 6



listswap(dims,il,i2)>dims2

For i,1,dimCarr)

m3aind(i,dims)>tmp
m3sto(m3rcl(tmp,dims,arr),listswap(tmp,il,i2),dims2,arr2)>arr2
EndFor

arr2

EndFunc

Note that transpos() calls m3aind(), m3rcl() and m3sto(), as well as the listswap() function described in
tip 3.18. These examples show typical results for transpos().

transpos({a,b,c,d,
d

,f.9,h},{2,2,2},2,3) returns {a,c,b,d,e,g,f, h}
transpos({a,b,c, e c

e d
,e,f,g,h},{2,2,2},1,2) returns {a,b,e,f,c,d,g,h}
transpos() is limited to rank-3 arrays, but it can be extended by changing the function references
ma3aind() and so on, as needed. Note that no error checking is done on the dims list or on the i1 and i2
input arguments, so make sure they are integers. As with a rank-2 array, the transpose function
changes the dimensions of the array: if a 1x2x3 array is transposed on the second and third indices,
the result is a 1x3x2 array. The dims2 variable in transpos() above gives the dimensions of the

resulting array.

If you are using Mathematica, note that regular cubic arrays in Mathematica can be converted to the
storage format used in this tip, with Flatten[array].

(Credit to Bhuvanesh Bhatt for the general index and address expressions and programs, the
transpos() function, and lots of help with this tip!)

Page 7



