
Thermocouple model functions
for voltage, temperature, derivative and tolerance

D. A. Burkett
4 mar 04

Summary

Use these functions to calculate thermocouple temperature, voltage, tolerances and the derivative
dEMF/dT for eleven thermocouple types: J, K, E, T, S, R, N, B, C, D and G. The relations for
temperature and EMF come from the Omega Complete Temperature Measurement Handbook and
Encyclopedia, 21st Century 2nd edition, 2000. I corrected a few errors in the Handbook functions and
developed functions for thermocouple error and dEMF/dT. If you need these functions, you what to do
with them, so I provide no background information.

All functions use temperatures in °C and thermal EMFs in volts. The reference junction temperature is
0°C. I use the abbreviation TC for thermocouple, and EMF for the thermal electromotive force (voltage)
generated by the junction.

The model functions are corrected for the International Temperature Scale of 1990 (ITS-90). The
source data can be found at www.omega.com. I refer to my TI-89/TI-92 Plus/Voyage 200 tip list, which
can be found at http://www.angelfire.com/realm/ti_tiplist/.

Installing the model functions

Install the functions in any folder, unless you use the error function tc_err(). In that case the functions
must be installed in folder thermcpl\. tc_err() uses matrix tc_errm which also must be installed in folder
thermcpl\. tc_err() calls util\casel(), which is included in this package. tc_err() also calls the
corresponding EMF function for the thermocouple type, for example, to find the errors for a type K TC,
tc_err() will call tck_e().

All routines can be archived.

You need only install the functions for the thermocouples you use. For example, if you only use type J
TCs, then you can get by with tcj_e(), tcj_t() to find EMF and temperature, and tcj_d() if you are
interested in the derivative. The error function tc_err() works properly as long as you do not specify TC
types for which the individual functions are not installed.

Using the model functions

Function names have the general form tc{type}_{op}(), where {type} is a single character to specify the
TC type, and {op} is a single character to specify the function operation. {type} may be j, k, e, t, s, r, n,
b, c, d or g. {op} may be e, t or d, to find the EMF, temperature or derivative, respectively. For example:

tck_e(100) returns the output voltage for a type K TC at 100°C
tcj_t(.005) returns the type J TC temperature at an EMF of 5mV
tcs_d(100) returns the type S derivative (in V/°C) at 100°C

1

The functions test the input arguments against range limits. If the argument exceeds the limit, then
undef is returned. Calling routines can compare the returned result to undef and take appropriate
action. The range limits for temperature and EMF are shown in Table 1 below.

Most of the model functions consist of two or more functions to cover the entire range. There are
discontinuities at the function boundaries, and I have made no effort to splice them smoothly. The
discontinuities are usually smaller than the errors of the functions, so this should not be a problem for
most uses. If you require a smooth transition from one function to another, you could try the
fourth-order splice described in tip [6.56] of the TI-89 tip list. Table 2 below lists the range boundaries
and the discontinuities at those boundaries.

Using the error function

The function tc_err() finds the error limits at a given temperature:

tc_err(type_string,temperature_°C,tol_string)

where

type_string is a single character string which specifies the TC type, which may be
upper- or lower-case, for example, "k" or "K"

temperature_°C is the temperature in °C

tol_string specifies the TC tolerance: "std" for standard wire, any other string for
special tolerance wire.

tc_err() returns a list of the form {temp_err, EMF_err} where temp_err is the temperature error, and
EMF_err is the equivalent thermoelectric voltage error. For example,

tc_err("k",100,"std")

find the errors for a standard type K TC at 100°C, and returns {2.2, 91.05E-6}, indicating that the
tolerance is ±2.2°C, or ±91.05 uV. If you want to find the tolerances at a given voltage instead of
temperature, use the corresponding function to convert voltage to temperature, for example

tc_err("j",thermcpl\tcj_t(.027),"special")

returns the tolerances for a low-tolerance type J TC at an output of 27mV.

tc_err() can return undef or several error messages instead of tolerance list, as shown in this table:

tc_err() Error Messages

tol_string is not a string"tc_err fault, tolerance"
temperature_°C is not a number"tc_err fault, temp"

type_string is not a string, or
type_string is not a single character, or
type_string is not a valid TC type

"tc_err fault, TC type"

temperature_°C is undef, or
temperature_°C exceeds model limits

{undef,undef}
CauseResult

2

tc_err() calls function util\casel(), and uses matrix thermcpl\tc_errm. util\casel() is described in the
TI-89/TI-92 Plus/Voyage 200 Tip List at tip [8.6]. The matrix is defined in a section below.

Thermocouple temperature ranges and errors

This table specifies the TC ranges and tolerances as they relate to the model functions.

Table 1
TC ranges and tolerances

Not availableNot specified-0.0158
38.5644

-17.778
2315.556

G

Not availableNot specified-0.163494
39.5472

-17.778
2320

D

Not availableT < 425: 4.5°C
T > 425: 1%

-0.0234471
37.06598

-17.778
2315.556

C

Not availableT < 800°C: not specified
T > 800: 0.5°C

-0.0257938
13.82028
(Note 1)

0
1820

B

T < 275: 1.1°C
T > 275: 0.4%

T < -110: 2%
-110 < T < 293.33: 2.2°C
T > 293.33: 0.75%

-4.345
47.513

-270
1300

N

T < 600: 0.6°C
T > 600: 0.1%

T < 600: 1.5°C
T > 600: 0.25%

-0.22647
21.1027

-50
1768.1

R

T < 600: 0.6°C
T > 600: 0.1%

T < 600: 1.5°C
T > 600: 0.25%

-.23555
18.6935

-50
1768.1

S

T < -125: 0.4%
-125 < T < 125: 0.5°C
T > 125: 0.4%

T < -66.67: 1.5%
-66.67 < T < 133.33: 1°C
T > 133.33: 0.75%

-6.258
20.872

-270
400

T

T < -250: 0.4%
-250 < T < 250: 1°C
T > 250: 0.4%

T < -170: 1%
-170 < T < 340: 1.7°C
T > 340: 1.7%

-9.835
76.373

-270
1000

E

T < 275°C: 1.1°C
T > 275°C: 0.4%

T < -110: 2%
-110 < T < 293.33: 2.2°C
T > 293.33: 0.75%

-6.458
54.886

-270
1372

K

T < 275°C: 1.1°C
T > 275°C: 0.4%

T < 293.33: 2.2°C
T > 293.333: 0.75%

-8.095
69.553

-210
1200

J

Special wire
Tolerance

Standard wire
Tolerance

EMF range
mV

Temperature
range °C

TC
Type

Note (1): Type B voltage as a function of temperature is non-monotonic, with a minimum of -2.584972uV at a
temperature of 21.020262°C. In consequence, function tcb_t() has a lower range limit of about -2.579382uV,
at 22°C.

Model function temperature errors, breakpoints and discontinuities

Table 2 below summarizes the error limits for the model functions T = f(EMF). The model functions for
EMF = f(T) are considered 'exact', but the inverse functions are approximations. The error limits in the
table are conservative, and the errors over some temperature ranges can be much less. The error for a
particular temperature range can be found by plotting the error expression

3

tcy_t(tcy_e(x)) - x

where y is the thermocouple type. This plot shows the error for a type K thermocouple from -200 to
1300 °C. The y-axis range is -0.05 to 0.04 °C.

The table also summarizes the model function range breakpoints and the discontinuities at those
breakpoints. In most cases the temperature discontinuities are on the order of the temperature errors,
which isn't too impressive, but the functions are still useful. It does make the point, though, that these
functions are more appropriate for general engineering use than precision thermometry.

Table 2
TC temperature errors, breakpoints and discontinuities

0.0113
0.000373

0.03088
3.7202

n/aNone±0.04G

0.0127
0.00744

2.887
3.8277

4.377 E-8783±0.03D
0.0020414.02n/aNone±0.013C

0.0255
0.0264

0.2913
2.4306

4.402 E-7630.615±0.03B

0.0352
0

0.0118

-3.998
0

20.613

00±0.06N

0.00875
0.00456
0.000833

1.923
13.228
19.739

1.7 E-14
1.72 E-12

1064.18
1664.5

±0.02R

0.001883
0.00967
0.00130

1.874
11.950
17.536

9.942 E-12
3.354 E-9

1064.18
1664.5

±0.02S

0.0354
0

-5.603
0

00±0.04T

0.0218
0

-8.825
0

00±0.03E

0.0405
0

0.0331

-5.891
0

20.644

1.974 E-120±0.06K

0
0.0675

0
42.919

7.49 E-11760±0.05J

Discontinuity at
temperature

breakpoint (°C)

EMF = f(T)
breakpoints

(mV)

Discontinuity at
EMF breakpoint

(V)

T = f(EMF)
breakpoints

(°C)

T=f(EMF) error
(°C)

TC
Type

4

Comments on the model equations

I have implemented the functions for TC EMF as given by the Omega Handbook. The Handbook also
gives functions for TC temperature as a function of EMF, but for some TC types the functions do not
cover the same temperature range as the EMF functions. For those TCs I found approximating
functions to provide guesses for nSolve() to solve for the temperature. This means that solutions will
be slower for those TC types, at low temperatures.

The derivative functions tcx_d() use the 'exact' EMF = f(T) models, so the derivatives are dEMF/dT
V/°C. To find dT/dEMF just use 1/(dEMF/dT). The derivative error limits can be estimated with

dEMF
dT min

= d
dT f(T − Te) dEMF

dT max
= d

dT f(T + Te)

where Te is the temperature error at T. As an example, find the derivative limits for a standard type K
TC at 500 °C. First find the temperature error with

tc_err("k",500,"std")[1]

which returns 3.75 so the temperature error is ±3.75 °C. Then find the derivative limits with

tck_d(500-3.75) returns 4.2622 38 E-5
tck_d(500+3.75) returns 4.2633 53 E-5

The nominal derivative at 500°C is 4.2628 33 E-5, so the worst-case limit is ±5.95 E-9 V/°C.

The equations for the minimum and maximum derivatives at a temperature arise from the fact that the
nominal model function EMF = f(T) is bound above and below by functions f1(T) and f2(T), where f1(T) =
f(T) + Ee and f2(T) = f(T) - Ee. We want f1'(T) and f2'(T). Ee is the EMF error which we assume is the
same for f1 and f2. Now, Ee = f(T+Te) - f(T), where Te is the temperature error. So f1(T) = f(T+Te), and
f1'(T) = f'(T+Te).

The temperature tolerance error is found from applying the tolerance in Table 1. The equivalent EMF
errors are found by calculating the EMFs at the temperature tolerance extrema and returning the
largest EMF error. For example, suppose that the temperature tolerance at temperature T is Td, then
the temperature limits are T1 = T - Td and T2 = T + Td. If the EMFs corresponding to T, T1 and T2 are
E, E1 and E2, respectively, then the EMF errors are | E - E1| and | E - E2 |.

Some TC types (S, R, B and C) exhibit a peak in the EMF error near the maximum temperature. While
it is physically unlikely that the EMF reaches a maximum, I have not modified the calculation prevent it.
The table below shows the errors and associated temperatures.

To determine the conditions for an error peak, let EMF = f(T) and define the temperature tolerance as a
multiplier n such that Te = nT so that Te is the maximum-tolerance temperature at T. For example, if
the tolerance specification is 2%, then n = 1.02. Define the EMF error as

EMFerr = e(T) = f(T) − f(Te)

Take the derivative and set to zero to find the maximum:

ord
dT e(T) = d

dT f(T) − d
dT f(nT) = 0 d

dT f(T) = d
dT f(nT)

5

If this condition is met for some T within the operating temperature range, then there will be an error
peak. The analysis is somewhat different for the type B TC, as the error is specified as a flat 0.5°C,
instead of a percentage tolerance, but the basic idea is the same.

Peak EMF tolerance errors and temperatures

246.6944 uV1900.0924 °C215.1205 uV2315.556 °CC
5.8520 uV1634.6054 °C5.7098 uV1820 °CB

22.9172 uV1688.645 °C21.7072 uV1768.1 °CR, special
57.3355 uV1689.912 °C54.4105 uV1768.1 °CR, standard
19.5206 uV1685.184 °C18.2671 uV1768.1 °CS, special
48.8775 uV1685.184 °C45.8033 uV1768.1 °CS, standard

EMF error
at peak T

EMF error
peak T

EMF error
at max TMax TTC Type

Matrix tc_errm description

tc_errm is an 11-row, 8-column matrix which holds the tolerances and temperature limits for all the TC
types. tc_err() uses this matrix in place of a lot of hard-coded constants to simplify the code. Not all
elements are relevant for all TC types.

tc_err matrix contents

2,315.56-17.78000000G
2,320-17.78000000D
2,315.56-17.78000000C
1,8200000000B
1,300-2700.0041.10.022.20.00752.2N
1,768.1-500.0010.60.00251.50.00251.5R
1,768.1-500.0010.60.00251.50.00251.5S
400-2700.0040.50.01510.00751T
1,000-2700.00410.011.70.0051.7E
1,372-2700.0041.10.022.20.00752.2K
1,200-2100.0041.10.00752.20.00752.2J
TmaxTminERspcEAspc

ERstd
T<0

EAstd
T<0

ERstd
T>0

EAstd
T>0

TC
Type

The column descriptions are:

EAstd T>0 Absolute error in °C for standard wire, T > 0°C
ERstd T>0 Relative error for standard wire, T > 0°C

EAstd T<0 Absolute error in °C for standard wire, T < 0°C
ERstd T<0 Relative error for standard wire, T < 0°C

EAspc Absolute error in °C for special limits-of-error wire
ERspc Relative error for special limits-of-error wire

6

Tmin Minimum model temperature
Tmax Maximum model temperature

Some examples

Example 1: Compare the linearity of a type J to type K thermocouple over the range 0 to 1000°C.

A perfectly linear function would have a constant derivative, so we plot the derivatives over the desired
temperature range. From the command line or in the Y= editor, set

tcj_d(x)→y1(x)
tck_d(x)→y2(x)

Set xmin to 0, xmax to 1000, then ZoomFit to get this plot:

The upper trace is the type J TC, the lower trace is the type K. The type J is more sensitive (more mV
output for each °C), but the type K is closer to linear.

Example 2: A temperature measurement system is subject to noise with a peak amplitude of 30 uV at
the type E TC input connector. Find the equivalent worst-case temperature error over a 200 to 400°
measurement range.

Again we use the derivative function to find the sensitivity. tct_d(200) returns 53.15uV/°C, tct_d(400)
returns 61.8 uV/°C, so the worst case is at 400°C. Then, (30 uV)/(61.8 uV/°C) gives a temperature
uncertainty of about 0.5°C.

Example 3: Find a 2nd-order approximation T=f(EMF) for a type K transfer function over a
temperature range of -10 to 100°C. Find the worst-case approximation error.

Try fitting 20 points:

seq(x,x,-10,100,(100-¯10)/19)→tlist
seq(tck_e(tlist[k]),k,1,20)→elist
quadreg elist,tlist
regeq(elist)-tlist→resid

The minimum and maximum values of the fit residuals list resid are -0.161 and 0.158°C, so the
worst-case approximation error is 0.161°C. The fit function coefficients are in the system variable
regcoef.

7

Source code - tc_err()

Annotated source code for tc_err() is shown below. The code is completely straightforward with the
possible exception of building the function calls for the EMF routines, to calculate the EMF error.

tc_err(τype,τc,τol)
Func
©("TC type",T°C,"std" or "special")
©Return {temp_err°C,emf_err volts}
©Calls util\casel(), uses thermcpl\tc_errm
©29mar04/dburkett@infinet.com

local τerr,εmferr,τi,εa,εr,ε1,ε2,εt,τmin,τmax

© τerr temperature error
© εmferr EMF error
© τi index into tc_errm matrix
© εa absolute temperature error
© εr relative temperature error
© ε1 EMF at τmin
© ε2 EMF at τmax
© εt EMF at τc
© τmin Temperature minimum error bound
© τmax Temperature maximum error bound

© Validate input arguments. Test temperature to undef, as tcx_t() functions may return
undef. In this case, return {undef,undef} to prevent faults when plotting, or to
propogate undef through subsequent calculations. Otherwise, ensure that TC type is a
single-character string, temperature is a number, and tolerance type is a string.

if τc=undef : return {undef,undef}
if gettype(τype)≠"STR"
 return "tc_err fault, TC type"
if dim(τype)≠1
 return "tc_err fault, TC type"
if gettype(τc)≠"NUM"
 return "tc_err fault, temp"
if gettype(τol)≠"STR"
 return "tc_err fault, tolerance"

© Convert tolerance and TC type to lower-case for subsequent comparisons. Convert the TC
type to index τi, and return error string if TC type not valid.

util\casel(τol)→τol
util\casel(τype)→τype
instring("jketsrnbcdg",τype)→τi
if τi=0
 return "tc_err fault, TC type"

© Find the minimum and maximum temperatures for the TC type and return {undef,undef} if
© temperature exceeds limits. Returning undef prevents faults when plotting errors.
thermcpl\tc_errm[τi,7]→τmin
thermcpl\tc_errm[τi,8]→τmax

if τc<τmin or τc>τmax
 return {undef,undef}

© Types J, K, E, T, S, R, and N can all be handled in the same way. Find the relative and
absolute error specifications εr and εa from the tc_errm matrix based on the wire
tolerance and temperature. Temperture error τerr is the larger of the absolute or
relative error. Find the EMF limits ε1 and ε2 from the temperature limits, then the
maximum EMF error.

if τi≤7 then
 if τol="std" then
 if τi<0 then
 thermcpl\tc_errm[τi,3]→εa

8

 thermcpl\tc_errm[τi,4]→εr
 else
 thermcpl\tc_errm[τi,1]→εa
 thermcpl\tc_errm[τi,2]→εr
 endif
 else
 thermcpl\tc_errm[τi,5]→εa
 thermcpl\tc_errm[τi,6]→εr
 endif

 max({εa,εr*τc})→τerr

 max({τc-τerr,τmin})→τmin
 min({τc+τerr,τmax})→τmax

 expr("thermcpl\tc"&τype&"_e(τmin)")→ε1
 expr("thermcpl\tc"&τype&"_e(τmax)")→ε2
 expr("thermcpl\tc"&τype&"_e(τc)")→εt
 max(abs({ε1-εt,ε2-εt}))→εmferr

 return {τerr,εmferr}

endif

© Type B is a special case since the temperature error is a constant 0.5C above 800C.
if τype="b" then
 if τc<800
 return {undef,undef}

 .5→τerr

 max({τc-τerr,τmin})→τmin
 min({τc+τerr,τmax})→τmax

 thermcpl\tcb_e(τmin)→ε1
 thermcpl\tcb_e(τmax)→ε2
 thermcpl\tcb_e(τc)→εt

 max(abs({ε1-εt,ε2-εt}))→εmferr

 return {τerr,εmferr}

endif

© Type C is a special case because of the error boundary point
if τype="c" then

 when(τc<425,4.5,.01*τc)→τerr

 max({τc-τerr,τmin})→τmin
 min({τc+τerr,τmax})→τmax

 thermcpl\tcc_e(τmin)→ε1
 thermcpl\tcc_e(τmax)→ε2
 thermcpl\tcc_e(τc)→εt

 max(abs({ε1-εt,ε2-εt}))→εmferr

 return {τerr,εmferr}

endif

© Error not specified for types D and G
if τype="d" or τype="g"
 return {undef,undef}

EndFunc

9

Source code - a typical set of model functions

I won't list the source code for all the model functions, as that would be repetitive with little benefit.
However, the three functions for the type K TC show the typical structure of all the functions.

First, the function to find the TC EMF, given temperature, consists of no more than a temperature
range limit test and a test for an undef input argument, followed by evaluation the appropriate
polynomial to find the EMF. As the Omega reference functions usually return the EMF in uV, I scale
the result to return volts.

tck_e(τc)
Func
©(temp °C) Type K TC EMF
©13feb04/dburkett@infinet.com

if τc=undef : return undef
if τc<⁻270 or τc>1372 : return undef

when(τc<0,polyeval({⁻1.6322697486⁻20,⁻1.9889266878⁻17,⁻1.0451609365⁻14,⁻3.1088872894⁻
12,⁻5.7410327428⁻10,⁻6.7509059173⁻8,⁻4.9904828777⁻6,⁻3.2858906784⁻4,2.3622373598⁻2,3
9.450128025,0},τc)*10^⁻6,(polyeval({⁻1.2104721275⁻23,9.7151147152⁻20,⁻3.2020720003⁻16,
5.6075059059⁻13,⁻5.6072844889⁻10,3.1840945719⁻7,⁻9.9457592874⁻5,1.8558770032⁻2,38.92
1204975,⁻17.600413686},τc)+118.5976*ℯ^(⁻1.183432⁻4*(τc-126.9686)^2))*10^⁻6)

EndFunc

Some of the functions to find temperature given EMF are more involved because the Omega reference
does not give model functions at low EMFs. I get around this by using nSolve() with an approximating
function, as shown below.

tck_t(εmf)
Func
©(EMF V) Type K TC temperature °C
©13feb04/dburkett@infinet.com

local τemf,εmfuv

© Define a function to return EMF=f(t), which is just taken from tck_e(), for the
appropriate temperature range.

define τemf(τ1)=func
polyeval({⁻1.6322697486⁻20,⁻1.9889266878⁻17,⁻1.0451609365⁻14,⁻3.1088872894⁻12,⁻5.7410
327428⁻10,⁻6.7509059173⁻8,⁻4.9904828777⁻6,⁻3.2858906784⁻4,2.3622373598⁻2,39.45012802
5,0},τ1)*10^⁻6
endfunc

© Test the EMF for undef, return same if so. Convert EMV to uV. Return undef if EMF is
out of range.

if εmf=undef : return undef
εmf*10^6→εmfuv
if εmfuv<⁻6458 or εmfuv>54886
 return undef

© Omega reference does not give corresponding function for T = f(EMF) for EMF < 5891 uV,
so use nSolve() to find T. A rational polynomial estimating function gives a close guess
for nSolve(), to speed execution time and ensure the correct root is returned.

if εmfuv<⁻5891 then
return
nsolve(τemf(τ)=εmf,τ=polyeval({⁻10589.5276,⁻69.0356203},εmf)/polyeval({16980.82020,264.13
52642,1},εmf))
© For remaining EMF ranges just implement polynomials given by Omega reference.

10

elseif εmfuv<0 then
return
polyeval({⁻5.1920577⁻28,⁻1.0450598⁻23,⁻8.6632643⁻20,⁻3.7342377⁻16,⁻8.977354⁻13,⁻1.08
33638⁻9,⁻1.1662878⁻6,2.5173462⁻2,0},εmfuv)

elseif εmfuv<20644 then
return
polyeval({⁻1.052755⁻35,1.057734⁻30,⁻4.413030⁻26,9.804036⁻22,⁻1.228034⁻17,8.31527⁻14
,⁻2.503131⁻10,7.860106⁻8,2.508355⁻2,0},εmfuv)

else
return
polyeval({⁻3.110810⁻26,8.802193⁻21,⁻9.650715⁻16,5.464731⁻11,⁻1.646031⁻6,4.830222⁻2,
⁻131.8058},εmfuv)

endif

EndFunc

The derivative functions are straightforward conversions of the EMF = f(T) functions. The derivatives of
the estimating polynomials are coded, using the same range boundaries as the original f(T). Again, the
functions return undef for an undef input, and return undef if the input temperature is out of range.

tck_d(τc)
Func
©(temp °C) Type K TC dEMF/dT
©14feb04/dburkett@infinet.com

if τc=undef : return undef
if τc<⁻270 or τc>1372
 return undef

10^⁻6*when(τc<0,polyeval({⁻1.6322697486⁻19,⁻1.79003401902⁻16,⁻8.361287492⁻14,⁻2.176221
10258⁻11,⁻3.4446196456801⁻9,⁻3.37545295865⁻7,⁻1.9961931510801⁻5,⁻9.8576720352⁻4,.047
244747196,39.450128025},τc),polyeval({⁻1.08942491475⁻22,7.77209177216⁻19,⁻2.24145040021
⁻15,3.36450354354⁻12,⁻2.80364224445⁻9,1.27363782876⁻6,⁻.000298372778622,.037117540064
,38.921204975},τc)-.028070438992704*(τc-126.9686)*(.99988166380228)^((τc-126.9686)^2))

EndFunc

Source code - casel() utility

casel() is used by tc_err() to convert input arguments to lower-case for subsequent testing. It must be
installed in the \util folder.

casel(s)
Func
© (string) convert to lower case
© 7may02/dburkett@infinet.com

local ä,ï,ÿ

""→ÿ

for ä,1,dim(s)
 ord(mid(s,ä,1))→ï
 ÿ&char(when(ï≥65 and ï≤90 or ï≥192 and ï≤214 or ï≥216 and ï≤223,ï+32,ï))→ÿ
endfor

return ÿ

EndFunc

11

