
The following quick reference guide is a condensation of the command reference in the TI-89/TI-92
Plus Guidebook. It consists of the following sections:

! Summary of commands
! Reserved system variable names
! EOS (Equation Operating System) Hierarchy

I have included this information in the tip list to save you the trouble of referring to the guidebook while
using the tip list. It may also be useful in its own right, if printed out at reduced size to be carried with
your calculator.

Note that the codes for setMode(), getMode(), setGraph() and setTable() are shown in tables in the
respective function definitions. These tables include the more recent numeric string codes.

Appendix D: Command Quick Reference Guide

15 - 1

Quick reference guide
to functions and commands

The function or command name is shown in
bold text as the first line of the description. The
lines immediately following show the arguments,
if any. Arguments are shown in italic text.
Optional arguments are shown in square
brackets []. expr is an expression, var is a
variable. If a function can accept more than one
type of argument, they may be shown on one
line separated by commas, for example,

(expr), (list), (matrix)

If a function may optionally take no arguments,
that is indicated as (). Program and function
structures may be shown with statements
separated with the colon :, which is the symbol
actually used for that purpose in programs.
Functions and commands indicated with
symbols are shown at the end of the reference
guide.

abs()
(expr), (list), (matrix)
Return absolute value of real argument or
modulus of complex argument.

and
expr1 and expr2
list1 and list2
matrix 1 and matrix 2
Return true or false or a simplifed form.

integer1 and integer2
Bit-by-bit 32-bit integer compare. Arguments
larger than 32-bit signed values are reduced
with symmetric modulo operation. Mode must
be Auto or Exact.

AndPic picVar [, row, column]
Logical-AND of graph screen and picvar at (row,
column); default is (0,0)

angle()
(expr), (list), (matrix)
Return angle of arguments interpreted as
complex numbers. Undefined variables are
treated as real variables.

ans()
(), (integer)

Return answer from home screen. integer can
be 1 to 99; not an expression; default is zero.

approx()
(expr), (list), (matrix)
Evaluate argument as decimal value if possible.

Archive var1[,var2] [,var3] ...
Move variables to flash ROM.

arcLen()
(expr,var,start,end), (list,var,start,end)
Return arc length of expression (or each
element of list) with respect to var from start to
end.

augment()
(list1,list2)
Return list which is list2 appended to list1

(matrix1,matrix2)
Append matrix2 appended to matrix1 as
columns.

(matrix1;matrix2)
Append matrix2 to matrix1 as rows.

avgRC(expr,var [,h])
Return forward-difference quotient (average rate
of change) of expr with respect to var. h is the
step value; if omitted, h=0.001

▶▶▶▶Bin
integer1▶Bin
Convert integer1 to binary. Non-decimal
integers must be preceeded with 0b or 0h.
Arguments larger than 32-bit signed values are
reduced with symmetric modulo operation.

BldData [datavar]
Create the data variable datavar based on the
current graph settings. If datavar is omitted, the
system variable sysdata is used. The variable is
a table of function values evaluated at each plot
point.

ceiling()
(expr), (list), (matrix)
Return the nearest integer that is greater than or
equal to expr or each element of list or matrix.
Argument may be real or complex.

cFactor()
(expr[,var])

15 - 2

(list[,var]), (matrix[,var])
Return complex factors of argument over a
common denominator. If var is omitted,
argument is factored with respect to all
variables. If var is used, cfactor() tries to factor
the argument toward factors which are linear in
var.

char(integer)
Return string of character indicated by integer.
Integer must be in the range 0 to 255.

Circle x, y,r [,drawmode]
Draw a circle on the Graph with radius r and
center (x, y). All arguments are in window
coordinate units.
drawmode = 1: draw circle (default)
drawmode = 0: turn off the circle
drawmode = -1: invert circle pixels

ClrDraw
Clear the Graph screen; reset Smart Graph

ClrErr
Clear error status and internal error context
variables. Sets errnum to zero.

ClrGraph
Clears graphed functions or expressions.

ClrHome
Clears the home screen, and sets arbitrary
constant suffixes to 1.

ClrIO
Clears the program I/O screen.

ClrTable
Clears table settings which apply to the ASK
setting in the Table Dialog setup box.

colDim(matrix)
Return number of rows of matrix.

colNorm(matrix)
Return maximum of sums of absolute values of
matrix column elements.

comDenom()
(expr [,var])
(list [,var])
(matrix [,var])
Return reduced ratio of expanded numerator
over expanded denominator, with respect to var

if used. Using var can save time, memory and
screen space, and result in expressions on
which further operations are less likely to result
in Memory errors.

conj()
(expr), (list), (matrix)
Return the complex conjugate of the argument.
Undefined variables are treated as real.

CopyVar
var1, var2
Copy the contents of var1 to var2. Unlike the
store operation (→), CopyVar does not simplify
the source variable. CopyVar must be used with
non-algebraic variable types such as Pic and
GDB.

cos()
(expr), (list)
Return the cosine of the argument. You may
override the current angle mode with ° or .

(matrix)
Return the matrix cosine of square
diagonalizable matrix, which is not the cosine of
each element. Symbolic elements must have
assigned values. The matrix cosine is calculated
with floating-point arithmetic (Approx mode).

cos-1()
(expr), (list)
Return the angle whose cosine is expression.

(matrix)
Return the matrix inverse cosine of square
diagonalizable matrix, which is not the inverse
cosine of each element.Results are found with
floating-point arithmetic.

cosh()
(expr), (list)
Return the hyperbolic cosine of the argument.

(matrix)
Return the hyperbolic cosine of square
diagonalizable matrix, which is not cosh() of
each element. Results are found with
floating-point arithmetic.

cosh-1()
(expr), (list)
Return the inverse hyperbolic cosine of the
argument.

15 - 3

(matrix)
Return the inverse hyperbolic cosine of square
diagonalizable matrix, which is not cosh-1() of
each element. Results are found with
floating-point arithmetic.

crossP()
(list1,list2), (matrix1,matrix2)
Return the cross product of the arguments. Lists
must have equal dimensions of 2 or 3. Matrices
must both be either row or column vectors of
equal dimensions 2 or 3.

cSolve(equation,var)
Return real and complex solutions for var.
Complex results are possible in Real mode.
Fractional powers with odd denominators use
the principle branch, not the real branch. Specify
complex variables with the underscore '_' suffix.

(equation1 and equation2 [and ...]
,{var1,var2[,...]}})
Return real and complex solutions for var to
system of equations equation1, equation2, ...
var may be a variable or a variable with a
solution guess such as x=1+3i. Not all equation
variables need be in the solution variable list. A
close complex solution guess may be needed to
get a solution.

CubicReg
xlist,ylist[,[freqList],[catlLst],[catincList]]
Calculate cubic polynomial regression and
update all statistics variables. First four
arguments must be variable names or c1-c99.
Last argument need not be a variable name and
cannot be c1-c99. All lists except catincList
must have equal dimension. The regression
equation is y = a*x^3 + b*x^2 + c*x + d.

cumSum()
(list), (matrix)
Return list of cumulative sum of elements or list,
or return matrix of cumulative sums of columns
from top to bottom.

CustmOff
Remove a custom toolbar.

CustmOn
Activate a custom toolbar as set up by Custom
... EndCustom block.

Custom
Set up a custom toolbar. Similar to ToolBar
except that Title and Item statements cannot
have labels.

Cycle
Transfer program control immediately to the
next iteration of the current For, While or Loop
loop.

CyclePic
picString, n [, [wait], cycles], [direction]]
Display each of n picture variables specified by
picString for wait seconds. cycles specifies the
number of display cycles. direction is set to 1
(default) for a circular cycle or to -1 for a
forward-backward cycle. To display three
variables pic1, pic2 and pic3, picString is "pic"
and n is 3.

▶Cylind
vector ▶Cylind
Display row or column vector in cylindrical form
[r∠θ,z]. vector must be a row or column vector
with three elements.

cZeros(expr,var)
Equivalent to exp▶list(cSolve(expr=0,var),var).
Return list of real and complex solutions for var
which make expr=0. Use the underscore '_'
suffix to specify complex variables. var may be
a variable name or a solution guess such as x =
1 + 3i.

({expr1,expr2 [,...]},{var1,var2 [,...]})
Return matrix of solutions for var1, var2, ...
where the expressions are simultaneously zero.
var1, var2, ... may be variable names or solution
guesses such as x = 1 + 3i. Solution zeros may
include real and complex solutions. Each
solution matrix row represents a zero, with the
components in the same order as the variable
list. You need not include all the expression
variables in the variable list. You may also
include variables which are not in the
expressions. Complex guesses are often
necessary, and the guess may have to be close
to the solution.

d(expr,var [,order])
(list,var [,order])
(matrix,var [,order])
Return derivative of order of expr, list or matrix
argument with respect to var. order must be an

15 - 4

integer. If order is less than zero, the
anti-derivative is returned. d() does not fully
simplify the expression and var before finding
the derivative.

▶▶▶▶DD
number▶DD
list▶DD
matrix▶DD
Return decimal equivalent of the angle
argument. The current Angle Mode sets the
argument as degrees or radians. The argument
may be radians.

▶▶▶▶Dec
number▶Dec
Convert number to a decimal number,
regardless of the current Base mode.

Define
Define functionName(arg1,arg2, ...)=expr
Create function functionName() with arguments
arg1, arg2. fName() evaluates expression with
the supplied arguments and returns the result.
Do not use arg1 or arg2 as arguments when
calling functionName(). This form of Define is
equivalent to expr→functionName(arg1,arg2).

Define functionName(arg1,arg2,...)=Func
 block
EndFunc
Same as above except that block can include
multiple expressions and use Return to return
the result.

Define programName(arg1,arg2,...)=Prgm
 block
EndPrgm
Same as above except that program
programName() is defined. Programs cannot
return results.

DelFold folder1 [,folder2, folder3, ...]
Delete folders. The Main folder cannot be
deleted. An error message is shown if any folder
contains variables.

DelVar var1 [var2, var3, ...]
Delete variables from memory.

deSolve(ode12,indVar,depVar)
Return general solution of 1st- or 2nd order
ordinary differential equation ode12 with
independent variable indVar and dependent

variable depVar. The prime symbol ' indicates
the 1st derivative, two prime symbols ' ' indicate
the second derivative.

(ode1 and inCond,indVar,depVar)
Return particular solution of 1st-order differential
equation ode1 with initial condition inCond.
inCond is in the form depVar(inIndVar) =
inDepVar; for example, y(0) = 1. inIndVar and
inDepVar can be variables with no stored
values.

(ode2 and inCond1 and inCond2,indVar,depVar)
Return particular solution of 2nd-order
differential equation ode2 with initial conditions
inCond1 and inCond2. inCond1 specifies the
value of the independent variable at a point, in
the form depVar(inIndVal) = inDepVal. inCond2
specifies the value of the first derivative at a
point in the form depVar'(inIndVal) = in1stDeriv.

(ode2 and BndCnd1 and BndCnd2,indVar,
depVar)
Return particular solution of 2nd-order
differential equation with boundary conditions
BncCnd1 and BndCnd2.

det(matrix [,tol])
Return determinant of square matrix. Any
element less than tol is considered zero. The
default tol is 5E-14 * max(dim(matrix)) *
rowNorm(matrix).

diag()
(list), (rowMatrix), (colMatrix)
Return matrix with main diagonal elements of
argument.

(matrix)
Return row matrix whose elements are the main
diagonal elements of square matrix.

Dialog
Dialog : block : EndDlog
Display a dialog box during program execution.
block consists of Text, Request, DropDown and
Title commands. Dialog box variables are
displayed as default values. If [ENTER] is
pressed, the variables are updated and the
system variable ok is set to 1. If [ESC] is
pressed, the variables are not updated and ok is
set to zero.

15 - 5

dim(list)
Return dimension of list.

(matrix)
Return list of dimensions of matrix as
{rows,columns}

(string)
Return dimension (number of characters) of
string.

Disp [expOrString1], [expOrString2], ...
Display the program I/O screen. If any
arguments (expressions or strings) are used,
they are displayed on separate screen lines.
Arguments are displayed in Pretty Print if Pretty
Print mode is On.

DispG
Display the Graph Screen.

DispHome
Display the Home screen.

DispTbl
Display the Table screen. Use the cursor pad to
scroll. Press [ENTER] or [ESC] to resume
program operation.

▶▶▶▶DMS
expr ▶DMS, list ▶DMS, matrix ▶DMS
Display the argument as an angle in format
DDDDDD°MM'SS.ss". ▶DMS converts from
radians in radian mode.

dotP()
(list1,list2), (vector1,vector2)
Return the dot product of two lists or vectors.
Vectors must both be row or column vectors.

DrawFunc expr
Draw expr as a function of x on the Graph
screen.

DrawInv expr
Draw the inverse of expr on the Graph screen
by plotting x values on the y axis and vice versa.

DrawParm expr1, expr2 [,tmin] [,tmax] [,tstep]
Draw parametric expressions expr1 and expr2
with t as the independent variable, from tmin to
tmax with tstep between each evaluated t value.
The current Window variables are the defaults
for tmin, tmax and tstep. Using the t-arguments

does not change the Window settings. The
t-arguments must be used if the current Graph
mode is not Parametric.

DrawPol expr, [,θmin] [,θmax] [,θstep]
Draw expr as a polar graph with independent
variable θ. Defaults for θmin, θmax and ,θstep
are the current Window settings. Specifying
θ-arguments does not change the Window
settings. Theθ-arguments must be used if the
Graph mode is not Polar.

DrawSlp x1, y1, slope
Display the Graph screen and draw the line y =
slope*(x-x1) + y1.

DropDown title, {item1, item2, ...},var
Display a drop-down menu with the name title in
a Dialog box. The drop-down menu choices are
1:item2, 2:item2 and so on. The number of the
selected item is stored in var. If var exists and
its value is in the range of items, the referenced
item is the default menu selection.

DrwCtour
expr
list
Draw contours on the current 3D graph, in
addition to the contours specfied by the
ncontour system variable. expr or list specifies
the z-values at which the contours are drawn.
3D graph mode must be set. DrwCtour sets the
graph style to CONTOUR LEVELS.

 (enter exponent)
mantissaexponent
Enter a number in scientific notation as
mantissa * 10exponent. To avoid a decimal value
result, use 10integer, instead.

e^()
(expr)
Raise e to the expr power. e is the natural
logarithm base 2.718..., not the character 'e'. In
Radian angle mode, you may enter complex
numbers in the polar format reiθ.

(list)
Return list of e raised to each element in list.

(matrix)
Return the matrix exponential of square matrix,
which is not the same as e raised to the power
of each element. See cos() for calculation

15 - 6

details. matrix must be diagonalizable. The
result always contains floating-point numbers.

eigVc(matrix)
Return matrix of eigenvectors of square matrix,
whose elements may be real or complex. The
eigenvectors are not unique, but are normalized
such that if the eigenvector is

V = x1, x2,¢, xn

then

x1
2 + x2

2 +¢xn
2 = 1

eigVl(matrix)
Return the eigenvalues of square
diagnonalizable matrix, whose elements may be
real or complex.

Else See If
ElseIf See If

EndCustm See Custom
EndDlog See Dialog
EndFor See For
EndFunc See Func
Endif See If
EndLoop See Loop
EndPrgm See Prgm
EndTBar See ToolBar
EndTry See Try
EndWhile See While

entry([integer])
Return previous entry-line expression from the
history area. If used, integer cannot be an
expression and must be in the range 1 to 99.
See also ans().

exact()
(expr [,tol]), (list [,tol]), (matrix [,tol])
Evaluate argument with Exact mode arithmetic
regardless of the current Mode setting. tol, if
used, specifies the conversion tolerance and is
zero by default.

Exec string [,expr1] [,expr2] ...
Execute string interpreted as Motorola 68000
assembly language op-codes. expr1and expr2
are optional input arguments. Misinformed use
of Exec can lock up the calculator and cause
data loss.

Exit
Exit the current For, While or Loop block.

exp▶▶▶▶list(expr,var)
Convert expr to a list of the right-hand sides of
equations separated by 'or' in expr. Used to
extract individual solutions from results of
solve(), cSolve(), fMin() and fMax().

expand()
(expr), (list), (matrix)
Expand argument with respect to all variables
with transformation into a sum and/or difference
of simple terms. See also Factor()

(expr,var), (list,var), (matrix,var)
Expand argument with respect to var by
collecting similar powers of var and sorting the
factors with var as the main variable. expand()
also distributes logarithms and fractional powers
regardless of var. Specifying var can save time,
memory and result in a smaller expression. If
the argument only contains one variable,
specifying it as var may result in more complete
partial factorization. propFrac() is faster but less
extreme than expand(). See also comDenom()
and tExpand().

expr(string)
Return the evaluated expression in string.

ExpReg
xlist,ylist[,[freqList],[catlLst],[catincList]]
Calculate exponential polynomial regression
and update all statistics variables. First four
arguments must be variable names or c1-c99.
Last argument need not be a variable name and
cannot be c1-c99. All lists except catincList
must have equal dimension. The regression
equation is y = a*b^x.

factor()
(expr), (list), (matrix)
Factor argument with respect to all variables
over a common denominator. Argument is
factored as much as possible toward linear
rational factors without introducing new non-real
sub-expressions.

(expr,var), (list,var), (matrix,var)
Factor argument with respect to var, as much as
possible toward real factors linear in var, even if
irrational constants or subexpressions are

15 - 7

introduced. Also, comDenom() can achieve
partial factoring if factor() is too slow or
exhausts memory. See also cFactor()

(ratNum)
Return factors of rational number ratNum. Use
isPrime(), instead, to more quickly determine if
ratNum is prime.

Fill
expr,matVar
expr,listVar
Replace each element in matVar or listVar with
expr. matVar and listVar are variable names,
and the variables must exist.

floor()
(expr), (list), (matrix)
Return greatest integer which is less than or
equal to the argument. The argument may be
real or complex. floor() is identical to int(). See
also ceiling().

fMax(expr,var)
Return Boolean expression specifying possible
values of var which maximize expr with respect
to var, or locate the least upper bound. Use the
"with" operator "|" to limit the solution range or
add constraints. In Approx mode, fMax() finds
one approximate local maximum.

fMin(expr,var)
Return Boolean expression specifying possible
values of var which minimize expr with respect
to var, or locate the greatest lower bound. Use
the "with" operator "|" to limit the solution range
or add constraints. In Approx mode, fMin() finds
one approximate local minimum.

FnOff [1] [,2] ... [,99]
Deselects all Y= functions, with no arguments.
Optional arguments specify Y= functions to
deselect.

FnOn [1] [,2] ... [,99]
Selects all Y= functions, with no arguments.
Optional arguments specify Y= functions to
select. In 3D mode only, selecting any function
deselects all other functions.

For
For var,low,high [,step] : block : EndFor
Execute each statement in block iteratively for
each value of var. var ranges from low to high

and increments by step. step may be positive or
negative and the default is 1. var cannot be a
system variable.

format(expr,format)
Return expression expression as a string
formatted with the numeric format string format:

"F[n]" Fixed format; n is number of digits after
the decimal point.

"S[n]" Scientific format; n is the number of digits
after the decimal point.

"E[n]" Engineering format; n is the number of
digits after the first significant digit. Mantissa
radix point is adjusted so that exponent is a
power of three.

"G[n][c]" General format; samed as fixed, but
digits to the left of the radix are separated in
groups of three, separated by the c character.
By default c is a comma; if c is a period, the
radix point is a comma.

The suffix [Rc] may be added to any of the
format codes. c is a single character which
specifies the radix point character.

fpart()
(expr), (list), (matrix)
Return the fractional part of the argument, which
may be real or complex.

Func
Func : block : EndFunc
Func is required as the first statement of a
multi-statement function definition.

gcd()
(number1,number2), (list1,list2),
(matrix1,matrix2)
Return the greatest common denominator of the
arguments. The GCD of two fractions is the
GCD of the numerators divided by the least
common multiple of the denominators. The GCD
of fractional floating-point numbers is 1.0 in Auto
or Approx mode. If the arguments are lists or
matricec, the GCD of each corresponding
element is returned.

Get var
Retrieve a CBL or CBR value from the link port
and store it in var.

15 - 8

GetCalc var
Retrieve a value from the link port from another
calculator and store it in var.

GetConfg
Return a list of calculator attribute pairs. The
first pair element is a string which specifies the
attribute, and the second pair element is the
attribute. The attribute names are the same for
the TI-89 and the TI-92+, but the attributes may
differ. The "Cert. Rev. #" attribute pair appears
in the list only if a certificate has been installed.

{
"Product Name",productName,
"Version","versionString",
"Product ID",idString,
"ID#",id#String,
"Cert. Rev. #",certRev#,
"Screen Width",screenWidth,
"Screen Height",screenHeight,
"Window Width",windowWidth,
"Window Height",windowHeight,
"RAM size",ramSize,
"Free RAM",freeRAM,
"Archive Size",archiveSize,
"Free Archive",freeArchive
}

getDenom(expr)
Return the reduced common denominator of
expression.

getFold()
Return a string which is the current folder name.

getKey()
Return key code of a pressed key as an integer,
or return zero if no key is pressed.

getMode(modeString)
Return a string which is the current setting for
modeString.

("ALL")
Return a list of string pairs of all Mode settings.
The first element of the string pair is the mode
name string; the second element is the mode
setting string. See SetMode() for possible
settings.

{
"Graph", graphType,

"Display Digits", digitsFormat,
"Angle", angleUnits,
"Exponential Format", expFormat,
"Complex Format", complexFormat,
"Vector Format", vectorFormat,
"Pretty Print", prettyPrintStatus,
"Split Screen", splitScreenMode,
"Split 1 App", app1Name,
"Split 2 App", app2Name,
"Number of Graphs", numGraphs,
"Graph 2", graphType,
"Split Screen Ratio", ratio,
"Exact/Approx", exactApproxMode,
"Base", numberBase
}

getNum(expr)
Return numerator of expression reduced to a
common denominator.

getType(varName)
Return string indicating the data type of variable
varName.

"ASM" assembly-language program
"DATA" Data type
"EXPR" expression; includes complex, arbitrary,
undefined, ∞, -∞, TRUE, FALSE, �, ℯ
"FUNC" Function
"GDB" Graph data base
"LIST" List
"MAT" Matrix
"NONE" Variable does not exist
"NUM" Real number
"OTHER" Reserved for future use
"PIC" Picture
"PRGM" Program
"STR" String
"TEXT" Text type
"VAR" Name of another variable

getUnits()
Return a list of strings which specify the default
units. Constants, temperature, amount of a
substance, luminous intensity and acceleration
are not included. The list has the form
{"system","cat1","unit1","cat2","unit2",...}
where system is the unit system: SI, ENG/US or
CUSTOM. The cat strings specify the category,
and the unit strings specify the corresponding
default units.

Goto label
Transfer program control to label.

15 - 9

Graph
expr [,var] (function graph)
xExpr,yExpr [,var] (parametric graph)
expr [,θvar] (polar graph)
expr [,xvar] [,yvar] (3D graph)
Graph the expr argument with the current Graph
mode. Expressions created with Graph (or
Table) are assigned increasing function
numbers starting with 1. Modify or delete them
with the [F4] Header function in the table
display. The currently selected Y= functions are
not graphed. The independent variable of the
current graph mode is used if a var argument is
omitted. Use ClrGraph to clear the functions, or
start the Y= editor to enable the system
variables.

▶▶▶▶Hex
integer1▶Hex
Convert integer1 to hexadecimal. Non-decimal
integers must be preceeded with 0b or 0h.
Arguments larger than 32-bit signed values are
reduced with symmetric modulo operation.

identity(expr)
Return identitiy matrix with dimension of expr.

If
If BooleanExpr : statement
Execute single statement if BooleanExpr
evaluates to TRUE.

If BooleanExpr then : block :EndIf
Execute block if BooleanExpr evaluates to
TRUE.

If BooleanExpr then : block1
Else : block2 : EndIf
If BooleanExpr evaluates to TRUE, execute
block1 but not block2; otherwise execute block2
but not block1.

If BooleanExpr1 Then : block1
ElseIf BooleanExpr2 Then : block2
...
ElseIf BooleanExprN Then : blockN
EndIf
Execute block1 only if BooleanExpr1 evaluates
to TRUE, execute block2 only if BooleanExpr2
evaluates to TRUE, etc.

imag()
(expr), (list), (matrix)

Return the imaginary part of the argument. All
undefined variables are treated as real
variables.

Input [[promptString,]var]
If no arguments, pause program execution,
display the Graph screen and update xc and yc
(or rc and θc in Polar mode) by positioning the
cursor.

If argument var is used, the program pauses,
displays promptString on the Program I/O
screen and waits for the entry of an expression.
The expression is stored in var. If promptString
is omitted, "?" is displayed for the prompt.

InputStr [promptString,]var
Pause program execution, display promptString
on the Program I/O screen and wait for the entry
of an expression, which is stored as a string in
var. "?" is displayed as a prompt if promptStrin
is omitted.

inString(sourceString,targetString[,start])
Return position at which targetString starts in
sourceString. The search for targetString begins
at character number start, if start is used. start is
1 by default.

int()
(expr), (list), (matrix)
Return the greatest integer that is less than or
equal to the argument, which may be real or
complex. int() is identical to floor().

intDiv()
(number1,number2), (list1,list2),
(matrix1,matrix2)
Return the signed integer part of the first
argument divided by the second argument.

integrate
See ·().

iPart()
(number), (list), (matrix)
Return the integer part of the argument, which
may be real or complex.

isPrime(number)
Return True or False to indicate if number is
prime. Display error message if number has
more than about 306 digits and no factors less
than or equal to 1021.

15 - 10

Item
itemNameString
itemNameString,label
Set up a drop-down menu within Custom ...
EndCustm, or ToolBar ... EndTBar blocks. In a
Custom block, specifies the text that is pasted.
In a ToolBar block, specifies the branch label.

Lbl labelName
Define a label with name labelName in a
program. Goto labelName transfers control to
the instruction following labelName. labelName
must meet same requirements as variable
names.

lcm()
(number1,number2)
(list1,list2)
(matrix1,matrix2)
Return the least common multiple of the two
arguments. The LCM of two fractions is the LCM
of the numerators divided by the GCM of the
denominators. The LCM of fractional floating
point numbers is their product.

left()
(sourceString[,num])
Return the leftmost num characters from
sourceString.

(list[,num])
Return the leftmost num elements of list.

(comparison)
Return the left-hand side of the equality or
inequality of comparison.

limit()
(expr,var,point[,direction])
(list,var,point[,direction])
(matrix,var,point[,direction])
Return the limit of the argument expr, list, or
matrix with respect to var at point. The limit is
taken from the left if direction is negative, from
the right if direction is positive, or from both
directions otherwise. The default direction is
both.

Line xStart,yStart,xEnd,yEnd[,mode]
Display Graph screen and draw a line, including
the endpoints, from (xStart,yStart) to (yStart,
yEnd) according to mode:
mode=1: draw the line (default)

mode=0: turn off the line
mode=-1: invert the line

LineHoriz y[,mode]
Display Graph screen and draw a horizontal line
at window coordinate y, according to mode:
mode=1: draw the line (default)
mode=0: turn off the line
mode=-1: invert the line

LineTan expr1,expr2
Display Graph screen and draw line tangent to
expr1 at point x = expr2. The independent
variable for expr1 is x.

LineVert x[,mode]
Display Graph screen and draw a vertical line at
window coordinate x, according to mode:
mode=1: draw the line (default)
mode=0: turn off the line
mode=-1: invert the line

LinReg xlist,ylist[,[freqList],[catlLst],[catincList]]
Calculate linear regression and update all
statistics variables. First four arguments must
be variable names or c1-c99. Last argument
need not be a variable name and cannot be
c1-c99. All lists except catincList must have
equal dimension. The regression equation is
y = a*x + b.

list▶▶▶▶mat(list[,rowElements])
Create a matrix whose elements are filled
row-by-row from. rowElements specifies the
number of elements in each matrix row, if used.
The default is one matrix row. If list does not fill
the matrix, zeros are added.

����list(list)
Return a list which is the difference between
successive elements of list. Each element of list
is subtracted from the next element, so the
returned list is always one element shorter than
list.

ln()
(expr), (list)
Return the natural logarithm of the argument.

(matrix)
Return the matrix natural logarithm of square
diagonalizable matrix. This is not the same as
finding the logarithm of each matrix element.

15 - 11

Floating-point results are used. See cos() for
calculation details.

LnReg xlist,ylist[,[freqList],[catlLst],[catincList]]
Calculate logarithmic regression and update all
statistics variables. First four arguments must
be variable names or c1-c99. Last argument
need not be a variable name and cannot be
c1-c99. All lists except catincList must have
equal dimension. The regression equation is
y = a + b*ln(x).

Local var1 [,var2, var3, ...]
Declare the arguments as local variables in a
program or function. Local variables exist only
during program or function execution. Local
variables must be used for loop index variables
and for storage in multi-line functions, since
global variables are not allowed in functions.

Lock var1 [,var2, var3, ...]
Lock the argument variables. Locked variables
cannot be changed or deleted unless Unlock() is
used.

log()
(expr), (list)
Return the base-10 logarithm of the argument.

(matrix)
Return the matrix base-10 logarithm of square
diagonalizable matrix. This is not the same as
finding the logarithm of each matrix element.
Floating-point arithmetic is used. Refer to cos()
for calculation details.

Logistic xlist,ylist[,[freqList],[catlLst],[catincList]]
Calculate logistic regression and update all
statistics variables. First four arguments must
be variable names or c1-c99. Last argument
need not be a variable name and cannot be
c1-c99. All lists except catincList must have
equal dimension. The regression equation is

 where e is the naturaly = a
1+becx + d

logarithm base.

Loop
Loop : block : EndLoop
Repeatedly execute block until a Goto or Exit
instruction is executed.

LU matrix, lMat, uMat, pMat [,tol]
Calculator the Doolittle LU (lower-upper) matrx
decomposition or real or complex matrix. matrix
must be a matrix name. The results are
lMat = lower triangular matrix
uMat = upper triangular matrix
pMat = permutation matrix
such that lMat * uMat = pMat * matrix
Any matrix element is set to zero if its value is
less than tol and matrix contains no
floating-point or symbolic elements. The default
value for tol is 5E-14 * max(dim(matrix)) *
rowNorm(matrix). Computations are done with
floating-point arithmetic in Approx mode.

mat▶▶▶▶list(matrix)
Return a list whose elements are those of
matrix, row by row.

max()
(expr1,expr2), (list1,list2), (matrix1,matrix2)
Return the maximum of the arguments. List and
matrix arguments are compared element by
element.

(list)
Return the maximum element of list.

(matrix)
Return a row vector whose elements are the
maximum elements of the columns of matrix.

mean(list[,freqList])
Return the mean of the elements of list. freqList
indicates the number of occurrences of the
corresponding list element.

(matrix[,freqMatrix])
Return a row vector whose elements are the
means of the matrix columns. freqMatrix
indicates the number of occurrences of the
corresponding matrix element.

median()
(list)
Return the median of the elements of list. All list
elements must simplify to numbers.

(matrix)
Return a row vector whose elements are the
medians of the columns of matrix. All matrix
elements must simplify to numbers.

15 - 12

MedMed xlist,ylist[,[freqList],[catlLst],[catincList]]
Calculate median-median regression and
update all statistics variables. First four
arguments must be variable names or c1-c99.
Last argument need not be a variable name and
cannot be c1-c99. All lists except catincList
must have equal dimension. The regression
equation is y = a*x + b.

mid()
For both variations of mid(): if count is omitted or
greater than the dimension of the argument, the
complete argument is returned. count must be
greater than or equal to zero. If count = 0, an
empty string or list is returned.

(string,start[,count])
Return count characters from string beginning at
character position start.

(list,start[,count])
Return count elements of string beginning at
element start.

min()
(expr1,expr2), (list1,list2), (matrix1,matrix2)
Return the minimum of the arguments. List and
matrix arguments are compared element by
element.

(list)
Return the minimum element of list.

(matrix)
Return a row vector whose elements are the
minimum elements of the columns of matrix.

mod()
(expr1,expr2), (list1,list2), (matrix1,matrix2)
Return the first argument modulo the second
argument where
mod(x,0) = x
mod(x,y) = x - y*floor(x/y)

The result is periodic in the second argument
when that argument is non-zero. The result is
either zero or has the same sign as the second
argument.

MoveVar var,curFolder,newFolder
Move var from curFolder to newFolder.
newFolder is created if it does not exist.

mRow(expr,matrix,index)
Return matrix with row index of matrix multiplied
by expr.

mRowAdd(expr,matrix,index1,index2)
Return matrix with row index2 replaced with
expr * row index1 + row index2

nCr(expr1,expr2)
Return number of combinations of expr1 items
taken expr2 at a time, for expr1 expr2 0, andm m
integer expr1 and expr2. This is the binomial
coefficient.

(expr,n)
If n is zero or a negative integer, return 0.

If n is a positive integer or non-integer, return

expr!
n!(expr−n)!

(list1,list2)
(matrix1,matrix2)
Return list of nCr() of corresponding element
pairs of each argument. Both arguments must
have the same dimension.

nDeriv()
(expr,var[,h])
Return an estimate of the numerical derivative
of expr with respect to var using the central
difference quotient formula. h is the step size
and defaults to 0.001.

(expr,var,list)
Return list of derivative estimates for each step
size in list.

(list,var[,h])
(matrix,var[,h])
Return list or matrix of derivative estimates for
each element of list or matrix.

NewData var,list1[,list2] [,list3] ...
Create data variable var whose columns are the
lists in order. The lists can be lists, expressions
or list variable names. Make the new variable
current in the Data/Matix editor.

var,matrix
Create data variable var based on matrix.

15 - 13

sysdata,matrix
Load matrix in the sysdata system data variable.

NewFold folderName
Create a folder with the name folderName, and
make that folder current.

newList(expr)
Return a list of zeros with dimension expr.

newMat(exprRow,exprCol)
Return a matrix of zeros with exprRow rows and
exprCol columns.

NewPic matrix,var [,maxRow] [,maxCol]
Create a pic variable var based on matrix.
matrix has two columns, and each row is the
coordinates of a pixel which is turned 'on' in the
picture. var is replaced if it exists. The default
size of var is the minimum boundary area
required by the matrix coordinates. maxRow
and maxCol specify optional maximum
boundary limits for var.

NewPlot n,type,xlist[,[ylist],[frqList],[catList],
[incList], [mark],[bucketSize]]
Create a new data plot definition for plot number
n, where n is 1 to 9. xlist and ylist are the data to
plot. frqList is the frequency list, catList is the
category list and incList is the category include
list. type specifies the plot type:
1 = scatter plot
2 = xyline plot
3 = box plot
4 = histogram
5 = modified box plot

mark specifies the plot symbol:
1 = box
2 = cross
3 = plus
4 = square
5 = dot

bucketSize must be > 0 and specifies the
historgram bucket width and varies with xmin
and xmax. bucketSize defaults to 1. incList need
not be a variable name and cannot be c1 - c99.
The other list arguments must be variable
names or c1 - c99.

NewProb
Clear all unlocked and unarchived single-
character variable names in the current folder.

Turn off all function and stat plots in the current
graph mode. Perform ClrDraw, ClrErr, ClrGraph,
SlrHome, ClrIO and ClrTable.

nInt(expr,var,lower,upper)
Return approximate integral of expr with respect
to var with integration limits lower and upper. var
must be the only variable in expr. lower and
upper must be constants, +∞ or -∞. The adaptive
algorithm uses weighted sample values of the
integrand in the interval lower<var<upper. nInt()
attempts an accuracy of six significant digits and
displays the warning message "Questionable
accuracy" if the accuracy may be less. Nested
nInt() calls can be used for multiple integration,
and the integration limits can depend on
integration variables outside them.

norm(matrix)
Return the Forbenius norm of matrix.

not
not BooleanExp
not integer
not list
not matrix
For Boolean arguments, return true, false or a
simplified Boolean expression. For integer
arguments, return the 1's complement of
integer. Results are displayed according to the
Base mode. Use the prefixes 0b or 0h for binary
and hexadecimal integers. If the integer
argument is larger than the maximum signed
32-bit binary number, a symmetric modulo
operation brings the argument into range. Auto
or Exact mode must be used with integer
arguments.

nPr(expr1,expr2)
For integer expr1 and expr2, and expr1 expr2 m
 0, return the number of permutations of expr1m

items taken expr2 at a time.

(m,r)
If r = 0, return 1. Otherwise return m!/(m-r)!

nSolve(eqn,var)
Solve for eqn for one approximate solution of
var. var may be a variable name in eqn, or a
variable name with a solution guess in the form
var = guess. Use the "|" operator to constrain
the solution range. nSolve() will return the string
"no solution found" if it cannot find a plausible
solution.

15 - 14

OneVar xList[[,freqList][,catList][,incList]]
Calculate one-variable statistics and update
system statistics variables. All lists must have
equal dimension except incList. The first three
arguments must be variable names of c1 - c99.
incList need not be a variable name and cannot
be c1 - c99.

or
exp1 or exp2
list1 or list2
matrix 1 or matrix 2
Return true or false or a simplifed form.

integer1 and integer2
Bit-by-bit 32-bit integer logical or. Arguments
larger than 32-bit signed values are reduced
with symmetric modulo operation. Mode must
be Auto or Exact.

ord()
(string), (list)
Return numeric code of the first character in
string. Return list of numeric codes of first
characters of strings in list.

Output row,column,exprOrString
Display expression or string exprOrString at text
coordinates row, column. exprOrString can
include conversion operations such as ▶DD.
exprOrString is pretty-printed if Pretty Print is
on.

P▶▶▶▶Rx()
(rExpr, Expr), (rList, List), (rMatrix, Matrix)✕ ✕ ✕
Return the x-coordinate of the (r,) pair. is✕ ✕
interpreted in degrees or radians according to
the current angle mode. Use ° or  to over-ride
the current mode setting.

P▶▶▶▶Ry()
(rExpr, Expr), (rList, List), (rMatrix, Matrix)✕ ✕ ✕
Return the y-coordinate of the (r,) pair. is✕ ✕
interpreted in degrees or radians according to
the current angle mode. Use ° or  to over-ride
the current mode setting.

part(expr[,n])
Extract subexpressions of expression expr. n is
a non-negative integer.

(expr)

Simplify expr and return the number of top-level
arguments or operands. Return 0 if expr is a
number, variable or symbolic constant.

(expr,0)
Simplify expr and return a string which contains
the top-level function name or operator. Return
string(expr) if expr is a number, variable or
symbolic constant.

(expr,n)
Simplify expr and return the nth argument or
operand, where n is greater than zero and less
than or equal to the number of operands
returned by part(expr). Otherwise return an
error.

PassErr
Pass an error to the next level. Typically used in
an Else clause (in place of ClrErr), when error
handling is not yet determined.

Pause [expr]
Suspend program execution until [ENTER] is
pressed. If included, expr is displayed on the
Program I/O screen. If expr does not fit on the
screen, the cursor pad scrolls the display. expr
can include conversion operation suffixes such
as ▶DD.

PlotsOff [1] [,2] [,3] ... [,9]
Turn all plots off with no arguments, or turn the
specified plots off. Only affects the current
graph in 2-graph mode.

PlotsOn [1] [,2] [,3] ... [,9]
Turn all plots on with no arguments, or turn the
specified plots on. Only affects the current
graph in 2-graph mode.

▶▶▶▶Polar
vector ▶Polar
Display vector in polar form [r∠θ]. vector must
be a row or column vector of dimension 2. Can
only be used at the end of an entry line, and
does not update ans.

complexValue ▶Polar
Display complexValue in polar form: (r∠θ) in
Degree mode, or reiθ in Radian mode.
complexValue can have any complex form, but
reiθ causes an error in Degree mode.

15 - 15

polyEval()
(list,expr), (list,list2)
Interpret list as the coefficients of a polynomial
in descending degree, and return the polynomial
evaluated for expr or each element of list2.

PopUp itemList,var
Display a pop-up menu with the character
strings in itemList, wait for the press of a
number key, and store the number in var. If var
exists and contains a valid item number, that
item is the default choice. itemList must have at
least one character string.

PowerReg
xlist,ylist[,[freqList],[catlLst],[catincList]]
Calculate power regression and update all
statistics variables. First four arguments must
be variable names or c1-c99. Last argument
need not be a variable name and cannot be
c1-c99. All lists except catincList must have
equal dimension. The regression equation is y =
axb.

Prgm
Prgm : block : EndPrgm
Required instruction that identifies the first line
of a TI-Basic program.

product(list [,start[,end]])
Return the product of the elements of list, from
start to end.

(matrix ,[start[,end]])
Return row vector whose elements are the
product of the column elements of matrix. start
and end specify a row range.

Prompt var1[,var2][,var3]...
Display one prompt for each argument on the
Program I/O screen. The prompt is the variable
name suffixed with "?". The expression entered
for each prompt is stored in the variable.

propFrac(rationalNumber)
Return rationalNumber as an integer and
fraction with the same sign, where the fraction
denominator is greater than the numerator.

(rationalExpr,var)
Return rationalExpr as a sum of proper ratios
and polynomial in var. The degree of var in each
ratio denominator is greater than the degree in
the numerator. Similar powers of var are

collected, and the terms and powers are sorted
with respect to var.

(rationalExpr)
Return a proper fraction expansion with respect
to the most main variable. The polynomial
coefficients are then made proper with respect
to their most main variable, and so on.

PtChg x,y
xList,yList
Display Graph screen and reverse pixel nearest
to window coordinates (x,y)

PtOff x,y
xList,yList
Display Graph screen and turn off pixel nearest
window coordinates (x,y).

PtOn x,y
xList,yList
Display Graph screen and turn on pixel nearest
window coordinate (x,y).

PtTest()
(x,y), (xList,yList)
Return True if the pixel nearest window
coordinates (x,y) is on, otherwise return False.

PtText string,x,y
Display Graph screen and place string with the
upper-left corner of the first character at the
pixel nearest window coordinates (x,y)

PxlChg row, col
rowList,colList
Display Graph screen and reverse the pixel at
pixel coordinates (row,col) or (rowList,colList)

PxlCrcl row,col,r [,drawMode]
Display Graph screen and draw circle with
radius r pixels and center at pixel coordinates
(row,col).
If drawMode = 1, draw the circle (default).
If drawMode = 0, turn off the circle.
If drawMode = -1, invert pixels along the circle .

PxlHorz row[,drawMode]
Display Graph Screen and draw horizontal line
at pixel coordinate row.
If drawMode = 1, draw the line (default).
If drawMode = 0, turn the line pixels off.
If drawMode = -1, invert the line pixels.

15 - 16

PxlLine
rowStart,colStart,rowEnd,colEnd[,drawMode]
Display Graph screen and draw line from pixel
coordinates (rowStart,colStart) to (rowEnd,
colEnd), including both endpoints.
If drawMode = 1, draw the line (default).
If drawMode = 0, turn the line pixels off.
If drawMode = -1, invert the line pixels.

PxlOff
row,col
rowList,colList
Display the Graph screen and turn off the pixel
at pixel coordinates (row,col).

PxlOn
row,col
rowList,colList
Display Graph screen and turn on the pixel at
pixel coordinates (row,col).

PxlTest()
(row,col), (rowList,colList)
Return True if the pixel at pixel coordinates
(row,col) is on, otherwise return False.

PxlText string,row,col
Display Graph screen and place string with the
upper-left corner of the first character at the
pixel coordinates (row,col)

PxlVert col[,drawMode]
Display Graph Screen and draw vertical line at
pixel coordinate col.
If drawMode = 1, draw the line (default).
If drawMode = 0, turn the line pixels off.
If drawMode = -1, invert the line pixels.

QR matrix,qMatName,rMatName[,tol]
Calculate Householder QR factorization of real
or complex matrix. The Q and R result matrices
are stored to the matName variables: Q is
unitary, R is upper triangular. If the matrix has
floating-point elements and no symbolic
variables, then any matrix element less than tol
is set to zero. The default value for tol is
5E-14 * max(dim(matrix)) * rowNorm(matrix).
Computations are done with floating-point
arithmetic if the mode is Approximate.

QuadReg
xlist,ylist[,[freqList],[catlLst],[catincList]]
Calculate quadratic polynomial regression and
update all statistics variables. First four

arguments must be variable names or c1-c99.
Last argument need not be a variable name and
cannot be c1-c99. All lists except catincList
must have equal dimension. The regression
equation is y = ax2 + bx + c.

QuartReg
xlist,ylist[,[freqList],[catlLst],[catincList]]
Calculate quartic polynomial regression and
update all statistics variables. First four
arguments must be variable names or c1-c99.
Last argument need not be a variable name and
cannot be c1-c99. All lists except catincList
must have equal dimension. The regression
equation is y = ax4 + bx3 + cx2 + dx + e.

R▶▶▶▶Pθθθθ()
(xExpr,yExpr), (xList,yList)
(xMatrix,yMatrix)
Return the θθθθ-coordinate of the (x,y) arguments,
as either a radian or degree angle, depending
on the current Angle mode.

R▶▶▶▶Pr()
(xExpr,yExpr), (xList,yList), (xMatrix,yMatrix)
Return the r-coordinate of the (x,y) arguments.

rand([n])
n is a non-zero integer. With no argument,
return the next random number between 0 and 1
in the sequence. When n>0, return random
integer in the interval [1,n]. When n<0, return
random integer in the interval [-n,-1].

randMat(numRows,numColumns)
Return matrix with dimensions (numRows,
numColumns) whose elements are random
integers between -9 and 9.

randNorm(mean,sdev)
Return floating-point number from the standard
distribution with mean and standard deviation
sdev.

randPoly(var,order)
Return a polynomial of order in var whose
coefficients are random integers from -9 to 9,
where the leading coefficient is not zero.

RandSeed n
Reseed the random number generator. If n = 0,
reseed with the factory defaults. Otherwise, n is

15 - 17

used to generate the two system variables
seed1 and seed2.

RclGDB GDBvar
Restore all Graph database settings from the
variable GDBvar. See StoGDB for the settings.

RclPic picVar[,row,column]
Display Graph screen and add the picture
picVar at the upper-left corner coordinates of
(row,column), by logically OR-ing picVar with
the Graph screen. The default coordinates are
(0,0).

real()
(expr), (list), (matrix)
Return the real part of expr, or the real parts of
the elements of list or matrix. Undefined
variables are treated as real. See also imag().

▶▶▶▶Rect
vector ▶Rect
Display vector in rectangular form [x,y,z]. vector
must be a row or column vector with dimension
2 or 3. Rect can only be used at the end of an
entry line and does not update ans.

complexValue ▶Rect
Display complexValue in rectangular for a + bi.
complexValue may have any form, but an reiθ

entry causes an error in Degree mode. For polar
entries the form (r∠θ) must be used.

ref(matrix[,tol])
Return the row echelon form of matrix. Treat
any element as zero if it is less than tol, and the
matrix contains floating-point elements and no
symbolic elements. The default tol is 5E-14 *
max(dim(matrix)) * rowNorm(matrix).
Floating-point arithmetic is used in Approx
mode.

remain()
(expr1,expr2), (list1,list2), (matrix1,matrix2)
Return the remainder of the first argument with
respect to the second argument as
remain(x,0) = x
remain(x,y) = x-y*iPart(x/y)
Note that remain(-x,y) = -remain(x,y).

Rename oldVarName,newVarName
Rename variable oldVarName as newVarName.

Request promptString,var

If used inside a Dialog...EndDlog structure,
create a user input box in the dialog box,
otherwise create a dialog box with the input box.
promptString must be less than 21 characters. If
var contains a string, it is displayed as the
default.

Return [expression]
Exit a program or function if no argument used,
otherwise return expression from a function.

right()
(list[,num])
Return the rightmost num elements of list.
Return list if num not used.

(string,[num])
Return the rightmost num characters of string.
Return string if num not used.

(comparison)
Return the right side of equation or inequality.

rotate()
(integer,[n])
Rotate signed 32-bit integer n bits. Rotate to the
left if n is positive, to the right if n is negative.
Default n is -1.

(list,[n])
Return list with elements rotated by n elements.
Rotate to the left for positive n, to the right for
negative n. Default n is -1.

(string,[n])
Return string with characters rotated by n
characters. Rotate to the left for for positive n, to
the left for negative n. Default n is -1.

round()
(expr[,d]), (list[,d]), (matrix[,d])
Return argument elements rounded to d digits
after the decimal point. d must be an integer in
the range 0-12. Default d is 12.

rowAdd(matrix,r1,r2)
Return matrix with row r1 replaced by the sum
of rows r1 and r2.

rowDim(matrix)
Return number of rows of matrix.

15 - 18

rowNorm(matrix)
Return the maximum of the sums of the row
elements of matrix. All elements must simplify to
numbers.

rowSwap(matrix,r1,r2)
Return matrix with rows r1 and r2 swapped.

RplcPic picVar[,row][,column]
Place picture picVar in the Graph screen with its
upper left corner at pixel coordinates row,
column. The area of the Graph screen affected
by picVar is cleared. row, column default to 0,0.

rref(matrix[,tol])
Return the reduced row echelon format of
matrix. Treat any element as zero if it is less
than tol, and the matrix contains floating-point
elements and no symbolic elements. The default
tol is 5E-14 * max(dim(matrix)) *
rowNorm(matrix). Floating-point arithmetic is
used in Approx mode.

Send [list]
Send list to the link port; used with CBL and
CBR.

SendCalc var
Send var to link port to be received by another
calculator. Receiving calculator must be on
Home screen or execute GetCalc from a
program. Use SendChat, instead, to send from
a TI-89/92+ to a TI-92.

SendChat var
Alternative to SendCalc which works with either
a TI-92 or TI-92+. Will only send variables which
are compatible with the TI-92. Will not send
archived variables or graph data base, etc.

seq(expr,var,low,high[,step]))
Return list whose elements are expr evaluated
at var, for each var from low to high incremented
by step. The default for step is 1.

setFold(folderName)
Return the name of the current folder as a
string, and set the current folder to folderName.
The folder folderName must exist.

setGraph(modeNameString,settingString)
Set the Graph mode modeName to setting and
return the previous setting as a string.
modeNameString and settingString may be

descriptive strings, or numeric code strings.
Numeric codes are preferred because the
descriptive strings depend on the language
localization setting. This table shows both the
descriptive string (in English) followed by the
equivalent numeric code.

"Wire Frame" "1"
"Hidden Surface" "2"
"Contour Levels" "3"
"Wire and Contour" "4"
"Implicit Plot" "5" [c]

"Style"
"11"

"Time" "1"
"t-vs-y'" "2"
"y-vs-t" "3"
"y1-vs-y2" "4"
"y1-vs-y2'" "5"
"y1'-vs'y2'" "6" [e]

"DE Axes"
"10"

"SlpFld" "1"
"DirFld" "2"
"FldOff" "3" [e]

"Fields"
"9"

"RK" "1"
"Euler" "2" [e]

"Solution method"
"8"

"Time" "1"
"Web" "2"
"U1-vsU2" "3" [d]

"Seq Axes"
"7"

"Off" "1"
"On" "2"

"Labels"
"6"

"Off" "1"
"On" "2"

"Leading cursor"
"5"

Not 3D mode:
"Off" "1"
"On" "2"
3D mode:
"Off" "1"
"Axes" "2"
"Box" "3"

"Axes"
"4"

"Off" "1"
 "On" "2" [b]

"Grid"
"3"

"Seq", "1"
"Simul" "2" [a]

"Graph Order"
"2"

"Rect", "1"
"Polar", "2"
"Off", "3"

"Coordinates"
"1"

settingStringmodeNameString

[a] Not available in Sequence, 3D or Diff
Equations graph mode
[b] Not available in 3D graph mode
[c] Applies only to 3D graph mode
[d] Applies only to Sequence graph mode
[e] Applies only to Diff Equations graph mode

15 - 19

setMode()
(modeString,settingString), (list)
Set mode modeString to settingString, and
return the current setting. list contains pairs of
modeString and settingString pairs. modeString
and settingString may be descriptive strings, or
numeric code strings. Numeric codes are
preferred because the descriptive strings
depend on the language localization setting.
Use the list argument to set several modes at
once. This table shows both the descriptive
string (in English) followed by the equivalent
numeric code.

Same as "Split 1 App""Split 2 App"

(no number codes)
"Home"
"Y= Editor"
"Window Editor"
"Graph"
"Table"
"Data/Matrix Editor"
"Program Editor"
"Text Editor"
"Numeric Solver"
"Flash App"

"Split 1 App"
"9"

"Full" "1"
"Top-Bottom" "2"
"Left-Right" "3"

"Split Screen"
"8"

"Off" "1"
"On" "2"

"Pretty Print"
"7"

"Rectangular" "1"
"Cylindrical" "2"
"Spherical" "3"

"Vector Format"
"6"

"Real" "1"
"Rectangular" "2"
"Polar" "3"

"Complex Format"
"5"

"Normal" "1"
"Scientific" "2"
"Engineering" "3"

"Exponential Format"
"4"

"Radian" "1"
"Degree" "2"

"Angle"
"3"

"Fix 0", ..., "Fix 12"
"Fix n" is "n+1"
"Float" "14"
"Float 1", ..., "Float 12"
"Float n" is "n+14"

"Display digits"
"2"

"Function" "1"
"Parametric" "2"
"Polar" "3"
"Sequence" "4"
"3D" "5"
"Diff Equations" "6"

"Graph"
"1"

Only applies to getMode(),
not setMode()

"ALL"
"0"

settingStringmodeString
"English", "Alternate
Language"

"Language"
(no number code)

"Dec" "1"
"Hex" "2"
"Bin" "3"

"Base"
"15"

"Auto" "1"
"Exact" "2"
"Approximate" "3"

"Exact/Approx"
"14"

"1:1" "1"
"1:2" "2"
"2:1" "3" (TI-92+ only)

"Split Screen Ratio"
"13"

Same as "Graph""Graph2"
"12"

"1" "1"
"2" "2"

"Number of Graphs"
"11"

"10"

setTable(modeNameString,settingString)
Set table parameter modeNameString to
settingString, and return the previous setting.
modeNameString and settingString may be
descriptive strings, or numeric code strings.
Numeric codes are preferred because the
descriptive strings depend on the language
localization setting. This table shows both the
descriptive string (in English) followed by the
equivalent numeric code.

"Auto" "1"
"Ask" "2"

"Independent"
"2"

"Off" "1"
"On" "2"

"Graph<->Table"
"1"

settingStringmodeNameString

setUnits(list)
Set default units to values specified by list and
return the previous defaults. Specify the built-in
SI (metric) units with {"SI"}, or the English/US
units with {"ENG/US"}.

Specify a custom set of default units with
{"CUSTOM","cat1","unit1"[,"cat2","unit2",...]}
where "cat" specifcies a unit category and "unit"
specifies the default unit. Any unspecified
category uses the previous custom unit.

Specify the previous custom default units with
{"CUSTOM"}

Shade
expr1,expr2[,xlow][,xhigh][,pattern][,patRes]
Display Graph screen, graphs expr1 and expr2,
and shade areas where expr1 < expr2. expr1

15 - 20

and expr2 use x as the independent variable.
xlow and xhigh specify left and right shading
boundaries, xlow and xhigh are bounded by,
and default to xmin and xmax.

pattern sets the shading pattern:
1 = vertical (default)
2 = horizontal
3 = negative-slope 45°
4 = positive-slope 45°

patRes specifies the shading pixel spacing
resolution:
1 = solid
2 = 1 pixel spacing (default)
3 = 2 pixel spacing
...
10 = 9 pixel spacing

shift()
(integer[,n])
Shift bits in binary integer, n times. Shift to left if
n is positive; to right if n is negative. Default n is
-1. In a right shift, the rightmost bit is dropped,
and 0 or 1 is inserted at the left to match the
leftmost bit. In a left shift, the leftmost bit is
dropped and 0 is inserted as the rightmost bit.

(list[,n])
Return list shifted left or right by n elements.
Shift to left if n is positive, to right if n is
negative. Default n is -1. Elements introduced
by the shift are set to the symbol undef.

(string[,n])
Return string shifted left or right by n characters.
Shift to left if n is positive, to right if n is
negative. Default n is -1. Elements introduced
by the shift are set to a space.

ShowStat
Show dialog box with the last computed
statistics results, if the results are still valid.
Results are cleared (not valid) if the data to
compute them has changed.

sign()
(expr), (list), (matrix)
For real and complex arguments, return
expr/abs(expr) when expr is not equal to zero.
Return 1 if expr is positive, or -1 if expr is
negative. sign(0) returns ±1 in the REAL
complex mode, otherwise it returns itself.

simult(coefMatrix,constVector[,tol])
Return column vector with solutions to the
system of linear equations where coefMatrix is a
square matrix of the equation coefficients and
constVector is a column vector with the same
number of rows as coefMatrix. If the matrix has
floating point elements and no symbolic
variables, then any element is treated as zero if
its value is less than tol. The default for tol is
5E-14 * max(dim(coefMatrix)) *
rowNorm(coefMatrix). Computations are done
with floating-point arithmetic in Approx mode.

(coefMatrix,constMatrix[,tol])
Solve multiple systems of linear equations,
where each system has the same equation
coefficients in coefMatrix. Each column of
constMatrix contains the constants for a
different system of equations. Each column of
the returned matrix is the solution for the
corresponding constMatrix column.

sin()
(expr), (list)
Return the sine of the argument. The argument
is interpreted in degrees or radians according to
the current mode setting. Use ° or  to override
the mode setting.

(matrix)
Return the matrix sine of square matrix, which is
not the sine of each element. Refer to cos() for
details. matrix must be diagonalizable and the
result always constains floating-point numbers.

sin-1()
(expr), (list)
Return the angle whose sine is the argument.
The result is returned as degrees or radians
depending on the current Angle mode setting.

(matrix)
Return the matrix inverse sine of square matrix,
which is not the same as the inverse sine of
each element. Refer to cos() for details. matrix
must be diagonalizable and the result always
constains floating-point numbers.

sinh()
(expr), (list)
Return the hyperbolic sine of the argument. The
argument is interpreted in degrees or radians
according to the current mode setting. Use ° or
 to override the mode setting.

15 - 21

(matrix)
Return the matrix hyperbolic sine of square
matrix, which is not the hyperbolic sine of each
element. Refer to cos() for details. matrix must
be diagonalizable and the result always
constains floating-point numbers.

sinh-1()
(expr), (list)
Return the angle whose hyperbolic sine is the
argument. The result is returned as degrees or
radians depending on the current Angle mode
setting.

(matrix)
Return the matrix inverse hyperbolic sine of
square matrix, which is not the same as the
inverse hyperbolic sine of each element. Refer
to cos() for details. matrix must be
diagonalizable and the result always constains
floating-point numbers.

SinReg
xlist,ylist[,[iterations][,period][,catList,incList]]
Calculate the sinusoidal regression and update
the system statistics variables. xlist and ylist are
the x- and y-data points. iterations is the the
maximum number of solution interations; the
range is 1 to 16 and the default is 8. Larger
values may result in better accuracy but longer
execution time. period specifies the estimated
period. If not used, the elements of xlist should
be in sequential order and equally spaced. xlist,
ylist and catList must be variable names or c1 -
c99. incList need not be a variable name and
cannot be c1 - c99. All lists must have equal
dimensions except incList.

solve()
(eqn,var), (inequality,var)
Return candidate real solutions (as Boolean
expressions) for var of equation eqn or
inequality. Attempts to return all solutions, but
for some arguments there are infinite solutions.
In the Auto mode setting, concise exact
solutions are attempted, supplemented by
approximate solutions. Solutions may exist only
in the limit from one or both sides due to default
cancellation of the greatest common divisor
from ratio numerators and denominators. false
is returned if no real solutions can be found. true
is returned if solve() determines that any finite
real value is a solution. Solutions may include

unique arbitrary integers of the form @nj, where
j is an integer from 1 to 255. Use the "|" operator
to constrain the solution interval or other
variables.

In Real mode, fractional powers with odd
denominators denote only the real branch.
Otherwise, multiple branched expressions
(fractional powers, logarithms, inverse
trigonometric functions) denote the principle
branch. solve() produces solutions only for that
one real or principle branch.

Explicit solutions to inequalities are unlikely
unless the inequality is linear and only includes
var. In the Exact mode setting, portions which
cannot be solved are returned as implicit
equations or inequalities.

(eqn1 and eqn2 [and ...],{var1,var2[,...]})
Return candidate real solutions (as Boolean
expressions) to the simultaneous equations. var
arguments may be variable names, or variable
names with a solution guess in the form var =
guess. If all equations are polynomials and you
supply no guesses, solve() uses the lexical
Gröbner/Buchberger elimination to attempt to
find all solutions. Simultaneous polynomial
equations can have extra variables with no
values. Solution variables of no interest may be
omitted. Solutions may include arbitrary
constants of the form @k, where k is an integer
from 1 to 255. Computation time or memory
exhaustion may depend on the order of the vars
in the equations or variables list.

solve() attempts to find all real solutions with
Gaussian elimination if you include no guesses,
any equation is in non-polynomial in any
variable, but all equations are linear in the
solution variables.

solve() attempts to find one real solution (with
an interative approximate method) if the system
is neither polynomial in all its variables nor linear
in its solution variables. The number of solution
variables must equal the number of equations
and all other variables must simplify to numbers.
Each solution variable starts at its guess value,
or 0.0 if a guess is not used. Guesses may need
to be close to the solution for convergence.

SortA
listName1[,listName2][,listName3],...

15 - 22

vectorName1[,vectorName2][,vectorName3],...
Sort the elements of the first argument in
ascending order. Sort elements of optional
arguments so that the element positions match
the new positions of the elements in the first
argument. All arguments must be names of lists
or vectors, and have equal dimensions.

SortD
listName1[,listName2][,listName3],...
vectorName1[,vectorName2][,vectorName3],...
Same as SortA, but sort the elements in
descending order.

▶▶▶▶Sphere
vector ▶Sphere
Display 3-element row or column vector in
spherical form [ρ∠θ∠φ]. θ is the angle from the
x-axis to the projection of the vector in the xy
plane, and φ is the angle from the z-axis to the
vector.

stdDev(list[,freqList])
Return the sample (not population) standard
deviation of the elements of list. freqList
elements specify the frequency of the
corresponding elements of list. Both lists must
have at least two elements, and the same
number of elements.

(matrix[,freqMatrix])
Return row vector of the sample standard
deviations of the column elements of matrix.
freqMatrix elements specify the frequency of
corresponding matrix elements. matrix must
have at least two rows.

StoGDB GDBvar
Create a Graph database variable (GDB) with
the current settings for:
Graphing mode; Y= functions; Window
variables; Graph format settings (1- or 2-Graph
setting; split-screen and ratio settings if 2-Graph
mode); Angle mode; Real/Complex mode; Initial
conditions (Sequence or Diff Equations mode);
Table flags; tblStart, �tbl, tblInput
Use RclGDB GDBvar to restore the graph
environment.

Stop
Stop program execution.

StoPic picVar[,pxlRow,pxlCol][,width,height]

Display the Graph screen and copy a
rectangular area of the display to picVar.
pxlRow and pxlCol specify the upper left corner
of the copied area, the default is 0,0. width and
height specify the pixel dimensions of the area
and default to the width and height of the current
graph screen.

Store
See →

String(expr)
Simplify expr and return the result as a string.

Style eqNum,styleString
Set graph function eqNum to use the graphing
property styleString. eqNum must be 1 - 99 and
the function must exist. styleString must be one
of: "Line", "Dot", "Square", "Thick", "Animate",
"Path", "Above" or "Below". Only some styles
are valid for particular graph modes:

Function: all styles
Parametric/Polar: line, dot, square, thick,
animate, path
Sequence: line, dot, square, thick
3D: none
Diff Equations: line, dot, square, thick, animate,
path.

subMat()
(matrix[,startRow][,startCol][,endRow][,endCol])
Return specified submatix of matrix. Defaults
are startRow = 1, startCol = 1, endRow = last
row, endCol = last column

sum(list[,start[,end]])
Return sum of list elements from start to end.

(matrix[,start[,end]])
Return row vector whose elements are the
sums of the columns of matrix. start and end
specify start and end rows.

switch([n])
Return the number of the active window, and
switch the active window based on n. Window 1
is top or left, window 2 is right or bottom. With
no argument, switch the current window and
return the previous active window number. n is
ignored if a split screen is not displayed.
Otherwise, for
n = 0: return the current window

15 - 23

n = 1: activate window 1, return previous active
window number.
n = 2: activate window 2, return previous active
window number.

 (transpose)
matrix
Return complex conjugate transpose of matrix.

Table expr1[,expr2][,var]
Build a table of the argument expression(s) or
functions. The current Y= Editor functions are
temporarily ignored. Expressions entered with
Table or Graph are assigned increasing function
numbers beginning with 1. To clear these
functions execute ClrGraph or display the Y=
Editor. If var is omitted, the current graph mode
independent variable is used. Table cannot be
used with 3D, sequence or differential equations
graphing. Valid variations are:
Function graph: Table expr,x
Parametric graph: Table xExpr,yExpr,t
Polar graph: Table expr, θ
See also BldData.

tan()
(expr), (list)
Return the tangent of the argument. The
argument is interpreted in degrees or radians
according to the current mode setting. Use ° or
 to override the mode setting.

(matrix)
Return the matrix tangent of square matrix,
which is not the tangent of each element. Refer
to cos() for details. matrix must be
diagonalizable and the result always constains
floating-point numbers.

tan-1()
(expr), (list)
Return the angle whose tangent is the
argument. The result is returned as degrees or
radians depending on the current Angle mode
setting.

(matrix)
Return the matrix inverse tangent of square
matrix, which is not the same as the inverse
tangent of each element. Refer to cos() for
details. matrix must be diagonalizable and the
result always constains floating-point numbers.

tanh()
(expr), (list)
Return the hyperbolic tangent of the argument.
The argument is interpreted in degrees or
radians according to the current mode setting.
Use ° or  to override the mode setting.

(matrix)
Return the matrix hyperbolic tangent of square
matrix, which is not the hyperbolic tangent of
each element. Refer to cos() for details. matrix
must be diagonalizable and the result always
constains floating-point numbers

tanh-1()
(expr), (list)
Return the angle whose hyperbolic tangent is
the argument. The result is returned as degrees
or radians depending on the current Angle mode
setting.

(matrix)
Return the matrix inverse hyperbolic tangent of
square matrix, which is not the same as the
inverse hyperbolic tangent of each element.
Refer to cos() for details. matrix must be
diagonalizable and the result always constains
floating-point numbers.

taylor(expr,var,order[,point])
Return the Taylor polynomial for expr in var.
point is the expansion point and defaults to zero.
The polynomial includes non-zero terms of
integer degree from 0 through order in (var -
point). taylor() returns itself if there is not
truncated power series of this order, or negative
or fractional exponents are required. Use
substitution or temporary multiplication by a
power of (var - point) for a more general series.

tCollect(expr)
Return expression in which products and integer
powers of sines and cosines are converted to a
linear combination of sines and cosines of
multiple arguments, angle sums and angle
differences. Trigonometric polynomials are
converted to linear combinations of harmonics.
tCollect() tends to reverse tExpand(). Applying
tExpand() to a tCollect() result, or vice versa, in
two steps may simplify an expression.

tExpand(expr)
Return expression in which sines and cosines of
integer-multiple angles, angle sums and angle

15 - 24

differences are expanded. Best used in Radian
mode, because degree-mode scaling interferes
with expansion. tExpand() tends to reverse
tCollect(). Applying tCollect() to a tExpand()
result, or vice versa, in two steps may simplify
an expression.

Text string
Display string in a dialog box. If used outside of
a Dialog...EndDlog block, a dialog box is
created, otherwise string is shown in the defined
dialog box.

Then
See If.

Title string[,label]
Create the title of a menu or dialog box when
used in a ToolBar or Custom structure, or a
Dialog ... EndDlog block. label is only valid in the
ToolBar structure. When used, it allows the
menu choice to branch to label.

tmpCnv(expr_°unit1,_°unit2)
Return temperature value expr converted from
unit1 to unit2. Valid units are _°C, _°F, _°K and
_°R. To convert a temperature range instead of
a value, use �tmpCnv().

����tmpCnv(expr_°unit1,_°unit2)
Return temperature range expr converted from
unit1 to unit2. Valid units are _°C, _°F, _°K and
_°R. To convert a temperature value instead of
a range, use tmpCnv().

Toolbar
ToolBar : block : EndTBar
Create a toolbar menu. block statements can be
either Title or Item. Item statements must have
labels. Title statements must have labels if there
are no Item statements.

Trace
Draw a SmartGraph and place the trace cursor
on the first Y= function, at the previous cursor
position, or at the reset position if regraphing
was necessary. Allows operation of the cursor
keys and most coordinate editing keys. Press
[ENTER] to resume operation.

Try
Try : block1 : Else : block2 : EndTry

Execute block1 until an error occurs, then
transfer execution to block2. errornum contains
the error number. See also ClrErr and PassErr.

TwoVar xList,yList[[,freqList][,catList][,incList]]
Calculate two-variable statistics and update
system statistics variables. All lists must have
equal dimension except incList. The first four
arguments must be variable names of c1 - c99.
incList need not be a variable name and cannot
be c1 - c99.

Unarchiv var1[,var2][,var3]...
Move argument variables from user data
archive memory (flash) to RAM. Archived
variables can be accessed, but not deleted,
renamed or stored to, since the variable is
locked. Use Archive to archive variables.

unitV(vector)
Return row- or column-unit vector, depending on
the form of vector, which must be a single-row
or single-column matrix.

Unlock var1[,var2][,var3]...
Unlock the argument variables. Use Lock to lock
variables.

variance(list[,freqList])
Return the population variance of the elements
of list. freqList elements specify the frequency of
the corresponding elements of list. Both lists
must have at least two elements, and the same
number of elements.

(matrix[,freqMatrix])
Return row vector of the population variance of
the column elements of matrix. freqMatrix
elements specify the frequency of
corresponding matrix elements. matrix must
have at least two rows.

when()
(condition,trueRes[,falseRes][,unknownRes])
Return trueRes, falseRes, or unknownRes,
when condition is true, false or unknown.
Returns the arguments when there too few
arguments to determine the result. Omit both
falseRes and unknownRes to define an
expression only when condition is true. undef
can be used as a result.

While
While condition : block : EndWhile

15 - 25

Execute block as long as condition is true.

"With" See |

xor
exp1 xor exp2
list1 xor list2
matrix 1 xor matrix 2
Return true, false or a simplifed form.

integer1 and integer2
Bit-by-bit 32-bit integer logical exclusive-or.
Arguments larger than 32-bit signed values are
reduced with symmetric modulo operation.
Mode must be Auto or Exact.

XorPic picVar[,row][,column]
Display Graph screen and logically exclusive-or
Graph screen pixels with those of picVar picture
variable. Only pixels exclusive to the screen or
picVar are turned on. row and column specify
the pixel coordinates for the upper left corner of
picVar; defaults are 0,0.

zeros()
(expr,var)
Return list of candidate values for var which
make expr = 0. Equivalent to
exp▶list(solve(expr=0,var))
zeros() cannot express implicit solutions,
solutions which require inequalities or solutions
which do not involve var.

({expr1,expr2[,expr3...]},{var1,var2[,var3...]})
Return matrix of candidate solutions of
simultaneous algebraic expressions expr in var.
var may be a variable or a solution guess in the
form var = guess. Each matrix row represents
an alternate solution, with the variables ordered
as in the {var} list.

If all equations are polynomials and you supply
no guesses, zeros() uses the lexical
Gröbner/Buchberger elimination to attempt to
find all solutions. Simultaneous polynomial
equations can have extra variables with no
values. Solution variables of no interest may be
omitted. Solutions may include arbitrary
constants of the form @k, where k is an integer
from 1 to 255. Computation time or memory
exhaustion may depend on the order of the vars
in the equations or variables list.

zeros() attempts to find all real solutions with
Gaussian elimination if you include no guesses,
any equation is in non-polynomial in any
variable, but all equations are linear in the
solution variables.

zeros() attempts to find one real solution (with
an interative approximate method) if the system
is neither polynomial in all its variables nor linear
in its solution variables. The number of solution
variables must equal the number of equations
and all other variables must simplify to numbers.
Each solution variable starts at its guess value,
or 0.0 if a guess is not used. Guesses may need
to be close to the solution for convergence.

ZoomBox
Display the Graph screen, pauses so that a box
can be drawn to define the new view window,
then updates the window.

ZoomData
Adjust the window settings based on the current
data plots and function graphs so that all data
points are sampled, then displays the Graph
Screen. Does not adjust ymin and ymax for
histograms.

ZoomDec
Set �x and �y = 0.1 and displays the Graph
screen with the origin centered.

ZoomFit
Display the Graph screen and set the
dependent variable Window dimensions so that
all the picture is displayed for the current
independent variable settings.

ZoomIn
Display the Graph screen, pauses so that a
center point can be set to zoom in, then updates
the viewing window. The zoom magnitude
depends on the Zoom factors xFact and yFact
in 2D graph modes, and on xFact, yFact and
zFact in 3D mode.

ZoomInt
Display the Graph screen, pauses so that a
zoom center point can be set, adjusts the
Window settings such that each pixel is an
integer in all directions, then updates the
viewing window.

15 - 26

ZoomOut
Display the Graph screen, pauses so that a
zoom center point can be set, then updates the
viewing window. The zoom magnitude depends
on the Zoom factors xFact and yFact in 2D
graph modes, and on xFact, yFact and zFact in
3D mode.

ZoomPrev
Display the Graph screen and update the
viewing window with the settings before the
previous zoom.

ZoomRcl
Display the Graph screen and update the
viewing window with the settings stored with
ZoomSto.

ZoomSqr
Display the Graph screen and adjust the x or y
window settings so that each pixel represents
an equal width and height in the coordinate
system, then update the viewing window. In 3D
mode, lengthen the shortest two axes to equal
the longest axis.

ZoomStd
Set the Window variables to the following
standard values, then update the viewing
window.
Function graphing:
 x:[-10,10,1], y:[-10,10,1], xres = 2
Parametric graphing:
 t:[0,2�,�/24], x:[-10,10,1], y:[-10,10,1]
Polar graphing:
 θ:[0,2�,�/24], x:[-10,10,1], y:[-10,10,1]
Sequence graphing:
 x:[-10,10,1], y:[-10,10,1]
 nmin=1, nmax=10, plotStrt=1, plotStep=1
3D graphing:
 x:[-10,10,14], y:[-10,10,14], z[-10,10]
 eyeθ°=20, eyeφ°=70, eyeψ°=0, ncontour=5
Differential equations graphing:
 t:[0,10,.1,0], x:[-1,10,1], y:[-10,10,1]
 ncurves=0, Estep=1, diftol=.001, fldres=14,
 dtime=0

ZoomSto
Store the current Window settings in Zoom
memory. Use ZoomRcl to restore the settings.

ZoomTrig
Display the Graph screen, set x = �/24, xscl =
�/2, center the origin, set the y settings to
[-4,4,.5] and update the viewing window.

+ (add)
expr1 + expr2
Return the sum of expr1 and expr2

list1 + list2
matrix1 + matrix2
Return list or matrix whose elements are the
sum of the corresponding elements. Argument
dimensions must be equal.

expr + list
list + expr
Return list whos elements are the sum of the list
elements and expr.

expr + matrix
matrix + expr
Return matrix with expr added to each diagonal
element of square matrix. Use .+ (dot plus) to
add an expression to each element.

- (subtract)
expr1 - expr2
Return expr1 - expr2

list1 - list2
matrix1 - matrix2
Return list or matrix whose elements are the
elements of list2 (or matrix2) subtracted from
the corresponding elements of list1 (or matrix1).
Argument dimensions must be equal.

expr - list
list - expr
Return list where each element is each list
element subtracted from expr, or expr
subtracted from each list element.

expr - matrix
Return matrix: (expr * identityMatrix) - matrix
matrix must be square.

matrix - expr
Return matrix: matrix - (expr * identityMatrix)
matrix must be square.

(Note: use .- (dot minus) to subtract an
expression from each element.)

15 - 27

* (multiply)
expr1 * expr2
Return the product of expr1 and expr2

list1 * list2
Return list whose elements are the products of
the corresponding elements of list1 and list2.
List dimensions must be equal.

matrix1 * matrix2
Return the matrix product of matrix1 and
matrix2. The number of rows of matrix1 must
equal the number of columns of matrix2.

expr * list
list * expr
Return list where each element is each list
element multiplied by expr.

expr * matrix
matrix * expr
Return matrix whose elements are the product
of expr and each element of matrix. This is the
same as .* (dot multiply).

/ (divide)
expr1 / expr2
Return the quotient of expr1 divided by expr2

list1 / list2
Return list whose elements are the quotients of
the corresponding elements of list1 and list2.
List dimensions must be equal.

expr / list
list / expr
Return list where each element is the quotient of
expr divided by each list element, or each list
element divided by expr.

matrix / expr
Return matrix whose elements are the quotient
of each element of matrix divided by expr. Use ./
(dot divide) to divide an expression by each
matrix element.

- (negate)
-expr
-list
-matrix
Return the negation of the argument. If the
argument is a binary or hexadecimal integer,
return the two's-complement.

% (percent)
expr%
list%
matrix%
Return (argument/100)

= (equal)
expr1 = expr2
list1 = list2
matrix1 = matrix2
Return True if first argument can be determined
to be equal to second argument. Return False if
first argument cannot be determined to be equal
to second argument. Otherwise, return a
simplified form of the equations. For list and
matrix arguments, return element-by-element
comparisons.

≠≠≠≠ (not equal)
expr1 ≠≠≠≠ expr2
list1 ≠≠≠≠ list2
matrix1 ≠≠≠≠ matrix2
Return True if first argument can be determined
to be not equal to second argument. Return
False if first argument can be determined to be
equal to second argument. Otherwise, return a
simplified form of the inequality. For list and
matrix arguments, return element-by-element
comparisons.

< (less than)
expr1 < expr2
list1 < list2
matrix1 < matrix2
Return True if first argument can be determined
to be less than second argument. Return False
if first argument can be determined to be greater
than or equal to the second argument.
Otherwise, return a simplified form of the
inequality. For list and matrix arguments, return
element-by-element comparisons.

≤≤≤≤ (less than or equal to)
expr1 ≤ expr2
list1 ≤ list2
matrix1 ≤ matrix2
Return True if first argument can be determined
to be less or equal to the second argument.
Return False if first argument can be determined
to be greater than the second argument.
Otherwise, return a simplified form of the
comparison. For list and matrix arguments,
return element-by-element comparisons.

15 - 28

> (greater than)
expr1 > expr2
list1 > list2
matrix1 > matrix2
Return True if first argument can be determined
to be greater than the second argument. Return
False if first argument can be determined to be
less than or equal to the second argument.
Otherwise, return a simplified form of the
comparison. For list and matrix arguments,
return element-by-element comparisons.

≥≥≥≥ (greater than or equal to)
expr1 ≥ expr2
list1 ≥ list2
matrix1 ≥ matrix2
Return True if first argument can be determined
to be greater than or equal to the second
argument. Return False if first argument can be
determined to be less than the second
argument. Otherwise, return a simplified form of
the comparison. For list and matrix arguments,
return element-by-element comparisons.

.+ (dot add)
matrix1 .+ matrix2
Return matrix whose elements are the sums of
the corresponding elements of matrix1 and
matrix2.

expr .+ matrix
matrix .+ expr
Return matrix whose elements are the sums of
expr and matrix.

.- (dot subtract)
matrix1 .- matrix2
Return matrix whose elements are the
corresponding elements of matrix2 subtracted
from matrix1.

expr .- matrix
Return matrix whose elements are the
elements of matrix subtracted from expr.

matrix .- expr
Return matrix whose elements are expr
subtracted from the elements of matrix.

.* (dot multiply)
matrix1 .* matrix2
Return matrix whose elements are the products
of each corresponding elements of matrix1 and
matrix2.

expr .* matrix
matrix .* expr
Return matrix whose elements are the product
of expr and the elements of matrix.

./ (dot divide)
matrix1 .* matrix2
Return matrix whose elements are the quotients
of the corresponding elements of matrix1
divided by matrix2.

expr .* matrix
matrix .* expr
Return matrix whose elements are the quotients
of expr divided by the elements of matrix, or the
elements of matrix divided by expr.

.^ (dot power)
matrix1 .^ matrix2
Return matrix whose elements are the elements
of matrix1 raised to the power of the
corresponding matrix2 elements.

expr .^ matrix
matrix .^ expr
Return matrix whose elements are expr raised
to the power of each matrix element, or the
elements of matrix raised to the expr power.

! (factorial)
expr!
list!
matrix!
Return the factorial of the argument. Only
returns a numeric value for non-negative integer
arguments.

& (append)
string1 & string2
Return string which is string2 appended to
string1.

····() (integrate)
(expr,var[,lower][,upper])
(list,var[,lower][,upper])
(matrix,var[,lower][,upper])
Return the integral of the first argument with
respect to var, from lower to upper integration
limits. Return anti-derivative if lower and upper
are omitted; constant of integration is omitted,
but lower will be added as a constant of
integration if upper is not used. Anti-derivatives
may differ by a numeric constant. Piece-wise

15 - 29

constants may be added so that the
anti-derivative is valid over a larger interval.

·() can be nested for multiple integrals, and the
integration limits can depend on integration
variables outside the limits.

When both lower and upper are present, ·()
attempts to subdivide the integral at
discontinuities. Numerical integration is used in
Auto mode when a symbolic anti-derivative
cannot be determined. Numerical integration is
tried first in Approx mode, but anti-derivatives
are sought if numerical differentiation is
inapplicable or fails.

·() returns itself for pieces of expr it cannot
determine.

√√√√() (square root)
√(expr), √(list)
Return the square root of the argument.

����(expr,var,low,high) (product)
Evaluate expr for each value of var from low to
high; return the product of the results. Return 1
if high = low -1. If high < low -1, return
1/�(expr,var,high+1,low-1)

ΣΣΣΣ(expr,var,low,high) (sum)
Evaluate expr for each value of var from low to
high and return the sum of the results. Return
zero if high = low -1. If high < low -1, return
-Σ(expr,var,high+1,low-1)

^ (power)
expr1^expr2
Return expr1 raised to the power of expr2.

list1^list2
Return list whose elements are the elements of
list1 raised to the powers of the corresponding
elements of list2.

expr^list
Return list whose elements are expr raised to
the powers of the elements of list.

list^expr
Return list whose elements are the elements of
list raised to the expr power.

matrix^integer

Return matrix raised to the integer power. matrix
must be square. If integer = -1, return the matrix
inverse. If integer < -1, return the inverse matrix
raised to the -integer power.

(indirection)
varNameString
Refer to the variable whose name is
varNameString.

 (radian)
expr, list, matrix
In Degree mode, multiply the argument by
180/�. Return argument unchanged in Radian
mode. Use  to force radians regardless of the
current Angle mode.

° (degree)
expr°, list°, matrix°
In Radian mode, multiply the argument by
�/180. Return argument unchanged in Degree
mode. Use ° to force radians regardless of the
current Angle mode.

∠∠∠∠ (angle)
[r,∠θ_angle] (polar input)
[r,∠θ_angle,z] (cylindrical input)
[r,∠θ_angle,φ_angle] (spherical input)
Return argument coordinates as a vector
depending on the current Vector format setting:
rectangular, cylindrical or spherical

(magnitude∠angle) (polar input)
Enter a complex value in (r∠θ) format. angle is
interpreted according to the current Angle mode
setting.

°, ', " (degree, minute, second)
dd°mm'ss.ss"
Return dd + (mm/60) + (ss.ss/3600), where dd
is may be positive or negative, mm and ss.ss
are non-negative numbers. Enter a number in
base-60 format, which allows entering angle in
degrees, minutes and seconds, regardless of
the current Angle mode. Also allows entry of
times as hours, minutes and seconds.

' (prime)
var'
var''
Enter prime symbol in a differential equation
(DE). A single prime denotes a first-order DE,
two prime symbols denote a second-order DE.

15 - 30

_ (underscore)
expr_unit
Designate the units for expr. All unit names
begin with the underscore.
var_
Treat var as complex if it has no value. By
default, variables without the underscore are
treated as real. Variables with values are treated
as the value type; real or complex. Complex
numbers can be stored in variables without the
underscore, but complex operations work better
if underscores are used.

▶▶▶▶ (convert)
expr_unit1▶_unit2
Convert expr with units unit1 to units unit2,
excluding temperature conversions. The units
must be in the same category. Use tmpCnv()
and �tmpCnv() for temperature conversions.

10^()
(expr), (list)
Return 10 raised to the power of the argument.

(matrix)
Return 10 raised to the power of square matrix.
This is not the same as 10 raised to the power
of each element. Refer to cos() for calculation
details. matrix must be diagonalizable, and the
result always contains floating-point numbers.

x-1 (^-1)
expr^-1
list^-1
Return the reciprocal of the argument.

matrix^-1
Return the inverse of square matrix, which must
be non-singular.

| ("with")
expr|Boolean1 [and Boolean2]...[and BooleanN]
Evaluate expr subject to the Boolean contraints.
This allows substitutions, interval constraints
and exclusions. If Boolean is an equality such
as var = value, then each occurence of var in
expr is substituted with value. A constraint is
formed with two or more Booleans joined with
'and', where each Boolean is an inequality. An
exclusion is a Boolean of the form var ≠ value,
which is primarily used to exclude exact
solutions of cSolve(), cZeros(), solve(), etc.

→→→→ (store)
expr→var
list→var
matrix→var
Create var if it does not exist and initialize it to
expr, list or matrix. If var exists and is not locked
or protected, replace its contents with expr, list
or matrix.

expr→functionName([parameter1,...])
Create functionName if it does not exist and
initialize it to expr. If functionName exists and is
not locked or protected, replace its contents with
expr. parameters are optional function
arguments.

list→functionName([parameter1,...])
matrix→functionName([parameter1,...])
Create functionName if it does not exist and
initialize it to list or matrix. If functionName
exists and is not locked or protected, replace its
contents with list or matrix. parameters are
optional function arguments.

©©©© (comment)
[text]
Process text as a comment line in a program or
function. © may be at the beginning of a line or
anywhere within the line. All text to the right of ©
to the end of the line is the comment.

0b, 0h
0bbinaryNumber
0hhexadecimalNumber
Denote a binary or hexadecimal integer. 0b or
0h must be entered regardless of the Base
mode setting, otherwise the number is treated
as decimal (base 10).

15 - 31

Reserved system variable names

zzsclycncurves
zzminy1()-y99()ncontour
zzmaxy1'()-y99'()nc
zysclminY
zyminxt1()-xt99()minX
zymaxxsclmedy3
zygridxresmedy2
zxsclxminmedy1
zxresxmaxmedx3
zxminxgridmedx2
zxmaxxfactmedx1
zxgridxcmedStat
ztstepdemaxY
ztstepui1-ui99maxX
ztplotdeu1()-u99()main
ztmintstepfldres
ztmaxdetplotfldpic
ztmaxtmineyeψ
zt0detmaxeyeφ
zscltceyeθ
zplstrttblStartexp
zplsteptblInputestep
znmint0errornum
znmaxsysMatheqn
zminsysDatadtime
zmaxSydiftol
zfactSxcorr
zeyeψseed2c1-c99
zeyeφseed1θstep
zeyeθregEq(x)θmin
zcregCoefθmax
z1()-z99()rcθc
zθstepr1()-r99()σy
zθminR2σx
zθmaxq3Σy2
yt1()-yt99()q1Σy
ysclplotStrtΣxy
yminplotStepΣx2
ymaxokΣx
yi1-yi99nStat�y
ygridnmin�x
yfactnmax�tbl

EOS (Equation Operating System)
Hierarchy

Exponentiation (^) and element-by-element
exponentiation (.^) are evaluated from right to
left, for example, 2^3^4 = 2^(3^4).

Post operations and exponentiation are
performed before negation, for example, -9^2 =
-(9^2).

Other operations are performed according the
these priorities:

1 Parentheses (), brackets [] and braces {}
2 Indirection (#)
3 Function calls
4 Post operators: degrees-minutes-seconds

(°,',"), factorial (!), percentage (%),
radian (), transpose ()

5 Exponentiation, power operator (^)
6 Negation (-)
7 String concatenation (&)
8 Multiplication (*), division (/)
9 Addition (+), subtraction (-)
10 Equality relations: =, ≠, <, ≤, >, ≥
11 Logical 'not'
12 Logical 'and'
13 Logical 'or', 'xor'
14 Constraint "with" operator (|)
15 Store (→)

15 - 32

