[6.16] Transpose operator and dot product find adjoint and complex scalar product

I couldn't have said it better myself:

"Actually, it is worth noting that the transpose operator "T" works as the adjoint (complex conjugate transposed).

For example, $[1,i;1,2i]^T$ is [1,1;-i,-2i].

In the same context, the scalar product dotP() works correctly as a complex scalar product. It is linear in the first argument, antilinear in the second. For example dotP([1,1],[1,i]) is 1-i."

(Credit to fabrizio)