[6.28] Bilinear interpolation

Tip [6.22] shows how to do linear interpolation in two dimensions, that is, to estimate y = f(x), given two
points. This basic concept can be extended to three dimensions, in that we want to estimate z = f(x,y).
In this tip, | show two methods two interpolate in three dimensions. The first method, called bilinear
interpolation, requires four (x,y,z) points and performs a linear interpolation. The second method, which
| call 9-point interpolation, requires nine (x,y,z) points, but fits the data to a general second-order
polynomial in x and y. This method is slower, but more accurate.

Bilinear interpolation

If we are given four (x,y) points such that

f(x1,y1) = z4 and X2 > X1
f(x1,y2) = 22 Y2 > Y1
f(x2,y1) = z3
f(x2,y2) = z4

then we can solve for a function in four unknown coefficients. There are an infinite number of such
equations, but the most simple candidate is

z=ax+bx+cxy+d
so the system to solve for a, b, cand d is

axs + bys + cxqy1 +d = z4
axi + by, +cxiy. +d =2,
axy+ by +cxoyr +d =25
axy+ by, + cxay. +d =24

We could solve this directly for a, b, ¢ and d, but we can get a more simple solution by scaling x and y,
like this:

_ _X7Xq _ Y™V
1= %2=x1 and  u=y;-y;

With this scaling, t = 0 when x = x; and t = 1 when x = x,. Similarly, u=0wheny =y;and u=1wheny
= y,. This equation system to solve simplifies to this:

d=z or a=2z3-2z
b+d=22 b=Zz-Z1
atd=1z; C=Z1-2Z2-Z3+ 24
atb+c+d=2z d =z

So the equation to estimate zin terms of t and u is
z2=(zz-z)t+ (Zo-zZ1)u + (z1 - 22 - Z5 + Z4)ut + z;4

We can expand this equation, collect on z4, z;, zs and zs, and further factor that result to get
z = zy(1-u)(1-t) + zou(1-t) + zst(1-u) + z4ut

The function bilinint() does the interpolation with this formula

bilinint(xa,xb,ya,yb,zaa,zab,zba,zbb,x,y)



Func

o(xa,xb,ya,yb,zaa,zab,zba,zbb,x,y) Lin interpolate z=f(x,y)
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local t,u

(x-xa)/(xb-xa)->t
(y-ya)/(yb-ya)-u

(1-t)*(1l-u)*zaa+t*(l-u)*zba+t*uxzbb+(1-t)*u*xzab

EndFunc

Note that the variable names have been changed to avoid conflict with built-in variables. The
equivalence is

Xa == X4 ya ==y zaa == z4 zab ==z,
xb == X yb ==y, zba == z; zbb ==z,

The z-variables are named so it is easy to remember which z-variable goes with a particular (x,y) data
point. The second two characters of each z-variable indicate the corresponding x- and y-variables:

zaa = f(xa,ya) zab = f(xa,yb) zba = f(xb,ya) zbb = f(xb,yb)

As an example, given this data:

ya=0.2 yb=0.3
xa=0.5 zaa = 0.4699 zab = 0.4580
xb = 0.6 zba = 0.5534 zbb = 0.5394

to interpolate for x = 0.52 and y = 0.28, the call is

bilinint(.5,.6,.2,.3,.4699,.4580,.5534,.5394,.58,.28)
which returns 0.4767.
This program, bilinui(), provides a user interface for the interpolation function.

bilinui()

Prgm

oUser interface for bilinint()
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local z

if gettype(x1)="NONE" then
@>xa:2->xb:0@>ya:2>yb
@>zaa:l»>zab:2>zba:3>zbb
1-x: 1>y

endif
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string(xa)->xa:string(xb)->xb
string(ya)->ya:string(yb)->yb
string(zaa)>zaa:string(zab)>zab
string(zba)>zba:string(zbb)>zbb



dialog

title "bilinui"
request "x1",xa
request "x2",xb
request "
request
request "f(xl,yl)",zaa
request "f(x1l,y2)",zab
request "f(x2,yl)",zba
request "f(x2,y2)",zbb

enddlog

expr(xa)->xa
expr(xb)->xb
expr(ya)-ya
expr(yb)-yb
expr(zaa)-»zaa
expr(zab)-»zab
expr(zba)-»zba
expr(zbb)-»zbb

if ok=@:return

string(x)-x
string(y)-y

dialog
title "bilinui"

request "x",x

request "y".,y
enddlog

expr(x)->x
expr(y)-y

if ok=@:return
bilinint(xa,xb,ya,yb,zaa,zab,zba,zbb,x,y)>z
dialog

title "bilinui result”

text "z= "&string(z)

enddlog

if ok=@:return

goto 11

EndPrgm

This program accepts the user input in dialog boxes, and displays the result in a dialog box. The
previous inputs are saved in global variables, so they can be used as defaults the next time you run the
program. These global variables are

xa, xb, ya, yb, zaa, zab, zba, zbb, x, y

You can press [ESC] at any dialog box to exit the program. Otherwise, the program continues to run,
so that you can do more than one interpolation at once.

Note that the input must be done in two dialog boxes, since there are ten input elements, and a single
dialog box can hold only eight. The program calls bilinint() to perform the actual interpolation. bilinui()
and bilinint() must be in the same folder, and that folder must be the current folder.



This method is good enough for many problems, assuming that the function changes slowly, and the x-
and y-values are close enough together such that the function is 'close’ to linear in both variables. The
interpolated values change smoothly and gradually within a particular x and y pair, but the derivatives
change abruptly as you move to the next row or column of the original data table. This may or may not
matter in your application. If it matters, there are more sophisticated interpolation methods which force
a continuous derivative across row and column boundaries. For more discussion, refer to

http:/lib-www.lanl.gov/numerical/bookfpdf/f3-6.pdf

which is the link to the appropriate section in the book Numerical Recipes in Fortran.

9-point interpolation

Bilinear interpolation cannot account for any curvature in the function to be interpolated, since it is, by
definition, linear. The 9-point interpolation method essentially performs a Lagrangian interpolating
polynomial fit on the function

z:a-x2-y2+b-x2-y+c-x-y2+d-x2+e-y2+f-x-y+g-x+h-y+i [1]

Since the interpolating polynomial includes squared terms of each independent variable, it can match
some curvature in the underlying function.

We need to find the coefficients a, b, ¢ ..., then we can calculate z for x and y. We have nine equations
in nine unknowns if we use the points in the table function to interpolate like this

Y1 Y2 Y3
X1 Z4 Z; Z3
X2 Zy Zs Zs
X3 Z7 Zg Zy

We choose x, and y, as the closest values in the table to the x and y at which we want to interpolate.
This results in a linear system of nine equations:

21 :a'X%.y%"'b X%'Y‘| +C'X‘| 'y%+d'X%+e'y%+f'X‘| .y1 +g-X1 +h-y1 +j [2]
Zzza,x%y%+b.xg.y2+c.)(1-y%+d-X%+e-y%+f'X‘|'y2+g'x1+h'y2+j
Z4:a-X%'y%+b'X%'y1 +C.XZ-y%+d-X%+e-y%+f'X2'y‘| +g'X2+h'y1 *]
25:a-X%.y%J'b'X%'YZ+C'X2'y%+d'xg+e'y%+f'x2'Y2+g-x2+h.y2+j
z6=a-xg'yg+b X%'y?,+C'X2'Y%+d'X%+e'y%+f'X2'y3+g-x2+h.y3+j
z7=a-x5y3 +b-x5 yq+c-x3-yF+d-xZ+e -y +f-x3-yq +g-Xg+h-yq +]
zg=a-x3y3+b-xZ-yp+C-x3-y5+d-x3 +e-y3 +f-x3-yp +g-xz +h-yp +]
Zg:a.x%'y%+b-X%-y3+C-X3'y%+d’X%+e’y%+f'x3'y3+g'x3+h.y3+j



In matrix form this system is written as

'x%-y% x%-y1 x1-y% x% y% Xqyq4 X1 yq 1] S
X%'Vg X%yz X1'y§ X% y% X1y2 xq y2 1 a 21
x2-y2 x2 . X -y2 x2 y2xy X4 yq 1 b 2
;g;%‘lg;g‘lS‘lS c | | z3
X2-y,I X2-y1 X2-y,I X% y; X2y1 X2 y1 1 d 24
x3-¥3 x5-y2 x2-¥3 X3 y3 xay2 X2 yp 1 e |=| 25 [3]
Xé.yé xé.y?’ xz-y§ X% y§ Xoy3 X9 y3 1 ; Z6

z

X5-Y§ X5°Y1 X3-Y] X5 Y X3¥1 X3 yq 1 o 7
x2-y2 x2-y X -y2 x2 y2 XaYs X3 Yo 1 , Z8
352235253232 "'-29-

" X3°Y3 X3°Y3 X3°Y3 X3 ¥3 X3¥3 X3 y3 1°

or, in terms of equivalent matrix variables
X.a=z [4]

We could solve this system for the coefficients, but that requires inverting the X matrix. We can avoid
inverting the matrix, and get the solution more quickly, if we scale the x- and y-coordinates such that

xq1=uq=0 Xg=Up =1 Xg=ugz=2 [5]
y1sv1:0 y25u2:2 y3EV3:2 [6]

We scale the original x and y variables (at which to interpolate) with

X—X -
H X2—X11 |X<X2 H H yyz—yy11 |y<y2 H
u= X—X2 [l and v=1[ y-yo u [7]
Hxz=xz *11x=x2 Hys=vz *11y=y2 {

With this scaling, the original 9x9 matrix becomes a matrix of constants, since all the v and v are
constants 0, 1 and 2, regardless of the actual values of x and y. Since the matrix is constant, its
inverse is constant, and we can calculate it once, in advance, and never need to calculate it again.

When we substitute the u's and v's for the x's and y’s in the matrix, we have
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and the inverse is



T T U TR T T B B
4 2 4 2 2 4 2 4
3 4,1 3, 1.3 .1
333 2,21 1.4
4 274 12 1?77
1 ?010—10 07 0 O
X = L I -
g‘I%OO 0:?010 [9]
5_32_34_1¥_1Z
—g 01020 0—7 0 O
-5 2—5 0O 0 0 0 0 O
1 0 0 0 0O O O 0O O0°

and the coefficient vector solution a is found simply by
a=x"1.z [10]

Again X' is a constant matrix, so the coefficients for the interpolating polynomial are found with a
single matrix multiply. Another advantage to this method is that all of the elements of the inverted

matrix can be represented exactly with 89/92+ BCD arithmetic, so they do not contribute to round-off
error in the final result

.Once we have the polynomial coefficients, it is straight-forward to interpolate for z with
z=a-u2.v2 +b-u2-v+c-u-v2+d-u2+e-v2+f-u-v+g-u+h-v+i [11]
This function, intrp9z(), implements these ideas.
intrpz9(x1,y1,zmat,x,y)

Func
o({xlist},{ylist},[zmatrix],x,y) 9-point z-interpolation

oUses matrix math\imla
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local u,v

when(x<x1[2]1, (x=x1[11)/(x1[21-x1[11),(x-x1[21)/(xT1[31-x1[21)+1)>u
when(y<y1[2],(y-y1[11)/(y1[2]1-y1[11),(y-y1[21)/(y1[3]1-y1[2])+1)>v

sum(matrTist(math\imla*(augment(augment(zmat[1],zmat[2]),zmat[3]))T)*x{ur2*%xv*2,u”
2%V UuxvA2 utr2,vr2,uxv,u,v,1})

EndFunc

Note that the matrix im7a (from equation [9]) must be present and stored in the \math folder.

The input arguments are

x| Three-element list of the table x-coordinates {x1,x2,x3}
yl Three-element list of the table y-coordinates {y1,y2,y3}
zmat 3x3 matrix of the table z-values

X The x-value at which to interpolate

y The y-value at which to interpolate




The z-values are passed as a 3x3 matrix only because that is a convenient way for the user to enter
the z-values, directly as they appear in a printed table.

The first two when() functions scale x and y to u and v as shown in [7]. The last line of the function
calculates and returns the interpolation result. The augment(augment{(...))” convertst the 3x3 z-matrix

to a single-column vector, to perform the matrix multiplication in [10]. The coefficient solution vector is
converted to a list, so that the built-in list multiplication can be used to find each term of the sum in [11].

As an example, suppose that we want to interpolate with this table at x = 0.27 and y = 0.55:

0.4 0.5 0.6
0.1 0.1692 0.2571 0.3616
0.2 0.1987 0.2860 0.3894
0.3 0.2474 0.3335 0.4350
So we have
xI={1,.2,.3}
yl={4, .5, .6}

1692 2571 .3616
zmat=| .1987 .2860 .3894
2474 3335 4350

x = 0.27
y =0.55

and the call to do the interpolation looks like

intrpz9({.1,.2,.3},{.4,.5,.6},[.1692,.2571,.3616;.

.4351,0.27,0.55)

which returns 0.3664.

This program, intrp9ui(), provides a user interface for intrpz9().

intrp9ui()
Prgm
oUI for intrpz9()

ocalls math\intrpz9, util\rq2v, util\rq3v

ocalls util\copyto_h by Samuel Stearly
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1987, .286,.3894;.2474, .3335,

local x123,y123,zz1,zz2,zz3,xy,res,x1,yl,zmat,x,y,z,inhome,errdisp

©oError message display program
define errdisp(msg)=Prgm
dialog
title "INPUT ERROR"
text "Entry error for"
text msg
text "Push ENTER to try again"
enddlog
EndPrgm

oCreate Tists & matrix
newlist(3)->xl
newlist(3)-yl



newmat(3,3)>zmat

oInitialize variables
"9,0,0">x123
"9,0,0">y123
"9,0,0">zz1
"9,0,0">zz2
"9,0,0">zz3

"@,0">xy

1-inhome

LbT inl

oPrompt for input variables
dialog

title "INTRPOUI"
request "x1,x2,x3",x123
request "yl,y2,y3",yl23
request "z row 1",zzl
request "z row 2",zz2
request "z row 3",zz3
request "x,y",xy

enddlog

if ok=@:return

oExtract x-variables
util\rq3v(x1l23)>res
if res="ERR" then
errdisp("x1l,x2,x3")
if ok=@ then
return
else
goto inl
endif
else
res[1]-x1[11]
res[2]-x1[2]
res[3]-x1[3]
endif

©Extract y-variables
util\rq3v(yl23)->res
if res="ERR" then
errdisp("yl,y2,y3")
if ok=@ then
return
else
goto inl
endif
else
res[1]-y1[1]
resf[2]-y1[2]
res[3]-y1[3]
endif

oExtract row 1 z-variables
util\rq3v(zzl)->res

if res="ERR" then

errdisp("z row 1")

if ok=@ then

return

else

goto inl

endif

else



res[1]-zmat[1,1]

res[2]-zmat[1,2]

res[3]-zmat[1,3]
endif

oExtract row 2 z-variables
util\rq3v(zz2)»res
if res="ERR" then
errdisp("z row 2")
if ok=@ then
return
else
goto inl
endif
else
res[1]-zmat[2,1]
res[2]-zmat[2,2]
res[3]-zmat[2,3]
endif

oExtract row 3 z-variables
util\rq3v(zz3)->res
if res="ERR" then
errdisp("z row 3")
if ok=@ then
return
else
goto inl
endif
else
res[1]-zmat[3,1]
res[2]-zmat[3,2]
res[3]-zmat[3,3]
endif

oExtract x,y variables
util\rq2v(xy)->res
if res="ERR" then
errdisp("x,y")
if ok=@ then
return
else
goto inl
endif
else
res[1]-x
res[2]1-y
endif

oDo the interpolation
math\intrpz9(x1,yl,zmat,x,y)>z

oDisplay result
dialog
title "RESULT"
text "x: "&string(x)
text "y: "&string(y)
text ""
text "z = "&string(z)
text ""
dropdown "Put z in Home?",{"no","yes"},inhome
text ""
text "Push ENTER to interpolate again"
enddlog



oCopy result to home screen
if inhome=2
util\copyto_h(string(x)&","&string(y),z)

©oExit, or interpolate again
if ok=0: return
goto inl

EndPrgm

Refer to the comments at the start of the program: it requires that a few functions be installed in the
\math and \util folders.

When the program is run, an input screen is shown. This screen shot shows the values entered for the
example above.
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You can push [ESC] to exit the program and return to the home screen. Note that several parameters
are entered in each entry field. When all the parameters are entered, the solution is calculated and
displayed in this result screen:
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y: 5.5e-1
z = 3.6642e-1
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You can press [ENTER] to return to the input screen and do another interpolation, or press [ESC] to
quit the program and return to the home screen.

For each interpolation, you can copy the interpolation result to the home screen by selecting YES in the

drop-down menu labelled Put z in Home?. If you choose this option, the results are copied to the home
screen when you exit the program. For the example, the home screen would look like
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The result is shown in the second level of the history display. The left-hand entry shows the x- and
y-coordinates as a string, and the right-hand entry is the interpolated result. This feature is made
possible by Samuel Stearly's copyto_h() function, as described in tip [7.8].

If you forget to enter one of the commas that separate the arguments, a dialog box error message is
shown:
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MATH FAD AFFEON FUMC 2730

This example shows that an error has been made in entering the y1,y2,y3 arguments. When [ENTER]
is pressed, the input screen is again shown, and you can correct the error.
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