[6.31] Fast 2nd-order interpolation with QuadReg

Linear interpolation is adequate for most table-interpolation problems. A second-order (quadratic)
interpolation is more accurate, but it does require entering one more data point. The first-order (linear)
interpolation uses two points to find the coefficients a and b in

ax+b=y
then calculates y at your desired x. A second-order interpolation uses three points to find a, b and c in
ax2 +bx+c= y

and again finds y at your desired x. The coefficients can be found as those of a Lagrangian
interpolating polynomial, but that is not built-in to the 89/92+. Quadratic regression is built-in, and it can
be used to find the coefficients. The basic steps are

1. Save the x- and y-coordinates for the three points to two list variables, one for the
x-coordinates, and one for the y-coordinates.

2. Execute the QuadReg command with the two lists.
3. Use the built-in system function RegEq(x) to interpolate y = f(x)

As an example, suppose that we have a table of gamma function values for x=1 to x=2, spaced every
0.04. We want to find gamma(1.895). We choose the three table x-values which bracket our desired
x-value of 1.895, where the middle x-value is the one closest to the desired x-value. From the table, the
three points are

x1=1.84 y1=0.94261236
x2=1.88 y2 = 0.95507085 x2=1.88 is closest to x=1.895
x3 =192 y3 = 0.96877431

Then these steps estimate gamma(1.895):

{1.84,1.88,1.92}>1x
{.94261236,.95507085,.96877431}>1y
QuadReg 1x,1y

regeq(1.895)

which returns gamma(1.895) = 0.96006375. The actual answer is 0.960062793, for an error of about
9.6E-7. Linear interpolation results in an error of about 1.5E-4, so the 2nd-order interpolation gives
several more significant digits.

Note that the regeq() function is a system variable that is updated when any regression command,
including QuadReg, is executed. Once you have executed QuadReg, you can use regeq() to
interpolate for additional x-values, as needed. These values need to be between x7 and x2, or you are
not interpolating, you are extrapolating, which is much less accurate.

This method cannot be written as a function because the QuadReg command only accepts global list
variable names as arguments. The QuadReg arguments must be list names, and not the lists
themselves.

| built this method into a program called Quadint(), which is shown here:

quadint()

Prgm

©2nd-order interpolation
©l50ct@@ dburkett@infinet.com



ocalls str2var()
local al,bl,a2,b2,a3,b3,xlyl,x2y2,x3y3,x

© Initialize all the point variables
© (note that al==x1, bl==yl, etc)
1-al

2-b1l

3»a2

45b2

5-a3

6-b3

F->x

© Transfer control here to repeat interpolations

1b1 t1
© Convert x- and y-data to pairs as strings; also convert 'x' to string
string(al)&","&string(bl)>xlyl
string(a2)&","&string(b2)>x2y2
string(a3)&","&string(b3)>x3y3
string(x)-x
© Dialog box for user to enter xy data points
dialog
title "ENTER DATA POINTS"
request "x1,yl", xlyl
request "x2,y2",x2y2
request "x3,y3",x3y3
request "x",x
text "(Push ESC to quit)"
enddlog
if ok=@:goto exitl © Give user a chance to quit here

© Convert the interpolation to a number

expr(x)-x

X

© Convert the x1, yl data point string to numbers
str2var(xlyl)->res

if gettype(res)="STRING":goto errl

res[1]-al

res[2]-bl

© Convert the x2, y2 data point string to numbers
str2var(x2y2)-res

if gettype(res)="STRING":goto errl

res[1]-a2

res[2]-b2

© Convert the x3, y3 data point string to numbers
str2var(x3y3)->res

if gettype(res)="STRING":goto errl

res[1]-a3

res[2]1-b3

© Build 1ists for QuadReg call
{al,a2,a3}~>11
{bl,b2,b3}>12

© Do the regression and calculate y = f(x)
quadreg 11,12
regeq(x)-res

© Display the result
dialog



title "QUADINT RESULT"

text "x = "&string(x)

text "y = "&string(res)

text "y saved in 'res'"

text "(Push ESC to quit)"

enddlog

if ok=0:goto exitl © Give user a chance to quit here
goto tl

© End up here, if user forgets to separate values with commas
1b1 errl
dialog
text "x and y values must"
text "be separated with commas”
enddlog
goto tl © Go try again

© Delete global variables before exiting
1b1 exitl
delvar 11,12

EndPrgm

This program just provides a convenient interface for entering the xy-data points and displaying the
result. Since the user might want to do several interpolations before quitting, the program loops to
repeat the interpolations. The user can press [ESC] at any dialog box to quit the program. The
interpolation result is saved in a global variable res, which can be recalled at the home screen after
exiting quadint(). The global list variables are deleted when the user quits the program.

quadint() calls the function str2var() to process the user's input. str2var() must be in the same folder as
quadint(), but they may be in any folder. You must make that folder current with setfold() before
running quadint(). str2var() is shown at the end of this tip.

When the program is executed, this dialog box is shown:

R EMTEFR DATA FOIMTS
xl,ul: [[.04,.04761% i
wd| %202t [L.B8,.955071 a5
AT .97, . 968774 a1
o | EEER 47
. tFush ESC Lo quith
Enter=0kK ESC=CHHCEL 23
guadint >
TYFE + [ENTERI=0K AMD [ESCI=CAMCEL

Each xy-data pair is entered in a single Request field; see tip [9.13] for more details on this. The x- and
y-data values are separated with a comma. An error message is shown if the user forgets to use the
comma. The picture above shows the fields filled in with the values for the example above. When all
the values are entered, the user presses [ENTER] to do the interpolation. Another dialog box is shown
with the interpolation result.

You can use this method with any of the built-in regression commands. You need to enter as many

points as there are coefficients in the equation. For example, the CubicReg command fits the data to a
cubic polynomial with four coefficients, so you would need to enter four points.

I mentioned that the function str2var() is called by quadint(). This is str2var():



str2var(xy)

Func

o("x,y") returns {x,y}
©150ct@@ dburkett@infinet.com

local s,x,y

instring(xy,",")>s oFind comma

if s=@:return "str2var err" ©Return error string if no comma found
expr(left(xy,s-1))->x oGet 'x' from string
expr(right(xy,dim(xy)-s))->y oGet 'y' from string

return {x,y} ©Return Tist of x & y

EndFunc



