[6.36] Integration may return 'undef' for identical integration limits

By definition,

 $\int_{a}^{a} f(x) dx = 0$

for any *a* and f(x). The TI-89/92+ evaluate such 'zero-width' integrals correctly with either *nInt()* or $\int ()$, unless f(x) cannot be evaluated at *a*. For example, these functions all return zero:

∫(1,x,Ø,Ø)	or	nInt(1,x,0,0)
∫(x,x,Ø,Ø)	or	nInt(x,x,0,0)
∫(sin(x),x,Ø,Ø)	or	nInt(sin(x),x,0,0)

However, if f(a) is undefined, then these expressions return undef.

∫(1/x,x,Ø,Ø)	or	nInt(1,x,0,0)
∫(sin(x),x,Ø,Ø)	or	nInt(1,x,0,0)

If the integration limits are specified symbolically instead of numerically, then \int () correctly returns zero, but *nlnt()* returns itself:

∫(1/x,x,Ø,Ø)	returns 0
nInt(1/x,x,Ø,Ø)	returns nInt(1/x,x,Ø,Ø)

This behavior is not a problem for manual calculations because you would never bother to evaluate an integral with identical limits. However, it could be a problem if you evaluate integrals within a program or function. If so, test the integration limits for equality before evaluating the integral. If they are equal, return zero. One method is

when $(a=b, \emptyset, \int (1/x, x, a, b))$