
[6.50] The Savage Benchmark

In March 2001 a discussion on the comp.sys.hp48 news group examined the Savage benchmark and
the performance of various HP and TI calculators with that benchmark. In this tip I describe that
benchmark, and summarize some test results provided by HP and TI users. More importantly, I offer
some opinion as to why benchmarks are fairly silly, particularly one as simple-minded as the Savage
benchmark.

A benchmark is a program intended to measure some attribute of a computer. The attribute may be
accuracy, execution time, code compactness or efficiency, or cost. Most generally, benchmark users
want to compare the performance of two or more computers, with the net result being an evaluation as
to which is the 'best' computer in terms of what the benchmark measures.

For perspective, Eric S. Raymond offers this definition in The Jargon Lexicon

benchmark n.

[techspeak] An inaccurate measure of computer performance. "In the computer
industry, there are three kinds of lies: lies, damn lies, and benchmarks." Well-known
ones include Whetstone, Dhrystone, Rhealstone (see h), the Gabriel LISP benchmarks
(see gabriel), the SPECmark suite, and LINPACK. See also machoflops, MIPS, smoke
and mirrors.

(http://www.tuxedo.org/~esr/jargon/html/entry/benchmark.html)

There are at least two fundamental objections to benchmarks with regards to applying them to
calculators. The first is that a simple benchmark by its very nature measures a narrow aspect of the
calculator's performance. The second objection is not the fault of the benchmark, but the benchmark
results can be taken well out of context to infer that one calculator is 'better' than another in some
vague, broad sense.

I do not claim that some HP calculator is 'better' than some TI calculator, or vice versa, because such a
claim cannot be made on the basis of a single benchmark. Instead, I examine this benchmark because
it is instructive and interesting as a specific example of a benchmark.

The Savage benchmark is a simple iterative floating-point calculation:

1. Set a = 1

2. Set a = tan(atan(exp(ln(sqrt(a*a)))))+1

3. Repeat step 2 n times

where

tan() is the tangent function
atan() is the arc-tangent function
exp() is the natural-logarithm-base e exponentiation function e^x
ln() is the natural logarithm function
sqrt() is the square root function
n is the number of loop iterations

and the calculation is performed with the angle mode in radians.

1

The two results for this benchmark are relative accuracy and execution time. The relative accuracy is
(a-(n+1))/(n+1), where a is the final value of a. Note that relative accuracy can be interpreted as the
number of correct significant digits. If the relative accuracy is 1E-9, then we have nearly nine accurate
significant digits. In general, the execution time is specified as time/n, or the time for each iteration. If
the same number of iterations is used for both calculators, then the total execution time can be
reported and compared.

If all the functions in the benchmark calculation were performed with no loss of precision, the relative
accuracy would be zero, since a reduces to n+1.

Benchmarks can be grouped in two classes, 'synthetic' and 'live'. A live benchmark attempts to
simulate a realistic mix of the all the operations the user would perform with the calculator. A synthetic
benchmark attempts to measure a much more narrow aspect of performance. The Savage benchmark
is clearly a synthetic benchmark, because it only measures a few functions out of the hundreds
available on the calculator. Further, it is particularly 'synthetic' because we would never go to the
trouble to actually calculate this expression as a real problem: we know that the final result is n+1.

For some reason, we have decided that n = 2499 is appropriate for benchmarking our calculators.
There is nothing magic about this number. As I will show later, the relative accuracy is strongly
dependent on n, even over a relatively narrow range. This makes the relative accuracy after n
iterations a poor measure of performance. Faster computers typically use n = 100,000 or 250,000. If
the computer (or calculator) does not have built-in timer facilities, then the timing must be done by
hand. In this case, a large value for n reduces relative uncertainty from human reaction time in starting
and stopping the stopwatch.

This table shows the relative error and execution time for a variety of calculators and languages. I
cannot vouch for the accuracy, since most results were culled from posts on the HP and TI discussion
groups.

Doug Burkett-3.081E-9187TI Basic, AMS 2.05TI-92+ HW2
Doug Burkett1.011E-996C (GCC compiler) AMS 2.05TI-92+ HW2
Jacek Marchel-3.081E-97268K assemblerTI-92+
Jacek Marchel-3.081E-9255TI Basic (HW1? AMS?)TI-92+
Doug Burkett-3.081E-9272TI Basic, AMS 2.05TI-89 HW1
Doug Burkett1.011E-9138C (GCC compiler), AMS 2.05TI-89 HW1
Ralf Fritzsch-3.081E-9328Z80 assemblerTI-86
Ralf Fritzsch-3.081E-9433TI BasicTI-86
Mike Morrow-3.08E-9368TI-85
Doug Burkett-1.022E-547 minOPL BasicPsion XPII
Ralf Fritzsch-3.572E-9138SysRPL, 15-digitHP-49G
Thomas Rast-2.054E-787SysRPL, 12-digit, Display offHP-49G
Ralf Fritzsch-2.054E-796SysRPL, 12-digit, Display onHP-49G
Ralf Fritzsch-2.054E-7120UserRPLHP-49G
Jonathon Busby-3.572E-962Saturn ASM, display off, 15-digitHP-48GX
Jonathon Busby-3.572E-970Saturn ASM, display on, 15-digitHP-48GX
Mike Morrow-2.054E-7112UserRPL?HP-48GX
Mike Morrow-2.054E-7199UserRPL?HP-48SX
Mike Morrow-2.054E-7602HP-42S
Mike Morrown/a~45 minHP-41CX
Mike Morrow-2.054E-7451HP-32Sii
Mike Morrow-2.054E-7255HP-28S
Mike Morrow-2.054E-7369HP-20S
Mike Morrown/a~45 minHP-15C
Reported by:

Relative
accuracy

Execution
time, secLanguageModel

2

The best relative accuracy is returned with the TI-89 / TI-92 Plus, with the GCC C compiler program.
The best execution time is returned by the HP-48GX with an ASM program and the display turned off.

So what can we conclude from these results? Very little, actually. We can conclude, for this very
synthetic problem, that the relative accuracies range from less than 7 to nearly 9 significant digits. We
see that newer hardware is more accurate and has faster execution times. We see that the choice of
programming language has a strong effect on the execution time. None of this is news; there are no
surprises here. Instead, what cannot be concluded is more significant:

! We cannot conclude that the HP-48GX is, in general, faster at numeric computation, because we
have only tested a tiny subset of all the functions.

! We cannot conclude that the TI-89 / TI-92 Plus is, in general, more accurate, because again, only a
tiny subset of the functions has been tested.

! We cannot even conclude that one calculator is more accurate than any other, even for these
functions, because we have not actually tested function evaluation accuracy. Instead, we have
tested the combined accuracy of three functions (tangent, e^x and square root) and their inverses.
It is possible (though unlikely) that errors in one function evaluation are compensated by opposite
errors in the inverse function.

To use the HP-49G and the TI-92 Plus as an example, all we have shown is that either calculator may
or may not be faster and more accurate than the other.

There is much data missing from the table above, and this also precludes a fair comparison. We don't
know, in each case, which versions of operating systems and compilers were used. We don't know
which hardware versions were used. Running changes in hardware and software design may mean
that clock rates and algorithms may have been changed. For a truly meaningful benchmark, all these
variables must be specified.

In regards to the execution time, we have not really measured the function evaluation time, anyway.
Instead, we have measured the combined execution time of the function evaluation and the loop
overhead. For the TI-89 / TI-92 Plus TI Basic programs, this distinction is significant because the loop
overhead is significant: 46 seconds for the TI-89 HW1, and 31 seconds for the TI-92 Plus HW2. This
amounts to about 18 mS/iteration for the TI-89, and 12 mS/iteration for the TI-92 Plus.

This is the TI Basic code used for the TI-89 / TI-92 Plus benchmarks:

savage2()
Func
local a,n
1→a
for n,1,2499
 tan(tan(ℯ^(ln(√(a*a)))))+1→a
endfor
(a-2500)/2500
EndFunc

This is the GCC C code used for the TI-89/92+ benchmarks:

// C Source File
// Created 3/22/2001; 12:21:38 PM

#define RETURN_VALUE // Redirect Return Value

// #define OPTIMIZE_ROM_CALLS // Use ROM Call Optimization

#define SAVE_SCREEN // Save/Restore LCD Contents

3

#include <tigcclib.h> // Include All Header Files

short _ti89; // Produce .89Z File
short _ti92plus; // Produce .9XZ File

// Main Function
void _main(void)
{
float a=1.0;
int k;
a=1.0;
for(k=1;k<2500;k++) a=tan(atan(exp(log(sqrt(a*a)))))+1.0;
push_Float ((a-2500.0)/2500.0);
}

The C version was written by Artraze (http://www.angelfire.com/pa3/cartethus/).

Note that the C version is 641 bytes, and the TI Basic version is only 83 bytes.

There has been some confusion about the number of significant digits used by the TI-89 / TI-92 Plus,
which can be cleared up by referring to the TI SDK manual. In usual calculator operation, 12 significant
digits are displayed, except for regression results, in which 14 significant digits can be shown. 14
significant digits are used for 'normal' calculator operation, and for TI Basic calculations. However, C
programs can use the C 'double' floating point, type, as this quote from section 16.4 describes:

"Applications can work with float numbers on the estack or in C floating-point
variables. The compiler supports two forms of floating-point values as described
in Chapter 2 of the compiler documentation. The calculator implementation uses
the standard C type double. The symbols BCD16 and Float are also defined to
be double. BCD16 is the recommended type for declaring floating-point variables
in applications.

"This type uses a 16-digit mantissa and provides more accuracy. Thus, BCD16
variables provide the best results when implementing iterative algorithms that
require a great deal of floating-point computation.

"push_Float is the routine that converts a C floating-point value into a tagged
floating-point value on the expression stack. The 16-digit value is rounded to
14-digits, pushed onto the estack, and then a FLOAT_TAG is pushed on top."

The C program listed above defines a as double, and this is why the TI-89/92+ relative accuracy is
slightly better than that of the HP-49G. For the vast majority of applications, this difference is
insignificant.

I mentioned earlier that the relative accuracy at a single point is a poor indicator of accuracy. The plot
below shows the relative accuracy at each calculator point, up to 4,250 points. This data is from the
TI-89 / TI-92 Plus TI Basic program.

4

Relative accuracy for TI-89/92+ Savage benchmark

Number of iterations 'n'

0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
el

at
iv

e
ac

cu
ra

cy

-1e-8

-9e-9

-8e-9

-7e-9

-6e-9

-5e-9

-4e-9

-3e-9

-2e-9

-1e-9

0e+0

1e-9

As expected, the relative error starts out at zero, then increases with the number of iterations.
However, the error does not increase smoothly, and varies considerably over short ranges. For
example, the relative error is about -3E-9 at 2500 iterations, but was -2E-9 at about 2200 iterations.
Since the actual shape of the relative error curve will depend on the number of significant digits, as well
as the algorithms used for the evaluated functions, some other statistical measure would be a better
indication of the relative accuracy. Some candidates are the RMS error over some range, or even the
mode. Of course, the best description of the relative error is given by the error plot itself.

References:

Byte magazine, 1985, vol 10 no 11
Sky & Telescope magazine, March 1987

Neither of these references discuss the benchmark in much detail.

5

