
[6.56]  Fourth-order splice joins two functions

A fourth-order splice joins two functions smoothly over an interval.  The splice function matches the two
functions at the interval boundaries, and the first derivatives of the splice equal those of the two
functions. The fourth-order splice uses a point in the interval interior which controls the splice behavior.
This splice is useful to join two functions, such as regression models, resulting in a model (with three
equations) which is continuous and smooth, in the first derivative sense, over the interval of interest.

This tip is organized in these sections:

Splice function derivation
The function splice4()
Example: approximate the sin() function
Differentiating the splice
Integrating the splice
Solving for the splice inverse
User interface program for splice4()
Scaling the derivatives
Scaling the splice integral

These programs and functions are developed and described:

splice4() Calculate the splice function coefficients
spli4ui() User interface for splice4()
spli4de() Calculate the splice derivative
spli4in() Calculate a numeric derivative for the splice
spli4x() Calculate x, given the splice value of y. Uses nsolve()
spli4inv() Find an approximate polynomial for the inverse of the splice function

Splice function derivation

Define

x1 = the left interval bound
x3 = the right interval bound
x2 = the interval interior control point, where x1 < x2 < x3

h = x2 - x1 = x3 - x2 (the splice half-width; the control point is midway between the interval bounds)
f1(x) is the left-hand function to be spliced
f2(x) is the right-hand function to be spliced
s(x) is the splice function

In general, the splice function is [1]s(x) = a $ x4 + b $ x3 + c $ x2 + d $ x + e

and the first derivative is [2]s ∏(x) = 4 $ a $ x3 + 3 $ b $ x2 + 2 $ c $ x + d

x2 is the point between x1 and x3 where we specify some desired value for the splice function s(x).
There are several choices for s(x2). For example, if f1(x) and f2(x) intersect, we may want to set x2 as
the point of intersection, and set s(x2) = f1(x2) = f2(x2). Alternatively, the splice may work better by
choosing a value for x2 slightly away from the intersection. If the functions do not intersect on the splice
interval, we may set s(x2) between the functions so the splice passes smoothly from one to the other.
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 We solve for the five coefficients of the splice polynomial by imposing five conditions:

1. The splice matches f1 at x1; there is no discontinuityf1 x1 = s x1

2. The splice matches f2 at x3; there is no discontinuityf2 x3 = s x3

3. We set the splice value at x2 to get some desired behaviors x2 = y2

4. Set the first derivatives equal at x1 for a smooth transitiond
dx f1 x1 = d

dx s x1

5. Set the first derivatives equal at x3 for a smooth transitiond
dx f2 x3 = d

dx s x3

so we solve these five equations for a, b, c, d and e:

(condition 1) [3]a $ x1
4 + b $ x1

3 + c $ x1
2 + d $ x1 + e = f1 x1

(condition 2) [4]a $ x3
4 + b $ x3

3 + c $ x3
2 + d $ x3 + e = f2 x3

(condition 3) [5]a $ x2
4 + b $ x2

3 + c $ x2
2 + d $ x2 + e = y2

(condition 4) [6]4 $ a $ x1
3 + 3 $ b $ x1

2 + 2 $ c $ x1 + d = f1
∏ x1

(condition 5) [7]4 $ a $ x3
3 + 3 $ b $ x3

2 + 2 $ c $ x3 + d = f2
∏ x3

This set of five equations in five unknowns can sometimes be solved, but just as often they cannot. As
we typically fit the splice over a narrow range of x, a singular matrix error often results from loss of
precision in solving for the coefficients. Even if the singular matrix error does not occur, the solved
coefficients are large and alternating in sign, which means that the polynomial is numerically unstable.
This problem is avoided by finding the splice polynomial as a function of a scaled value of xs, instead of
x itself. As usual, proper scaling simplifies the solution. For example, suppose we set x1s = -1, x2s = 0
and x3s = 1, where x1s, x2s and x3s are the scaled values of x1, x0 and x3, respectively. The splice
polynomial is now s(xs):

[9]s(xs ) = a $ xs
4 + b $ xs

3 + c $ xs
2 + d $ xs + e

Above, we defined h = x2 - x1; now we define a scaled interval half-width hs:

[10]hs = x2s − x1s = x3s − x2s = 1

We also define a scaling factor k such that

[11]k = hs
h = 1

h

Since we have scaled (transformed) the x- and y-data, we must also scale the derivatives used in [6]
and [7]. It turns out that we can easily transform the derivatives as

[12]f1s
∏ x1s = 1

k $ f1
∏

x1
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[13]f2s
∏ x3s = 1

k $ f2
∏

x3

These relations are derived in a section at the end of this tip. We can write [3] to [7] as a matrix
equation

[14]M $ c = v

where c is the coefficient vector we need, and

M =

x1s
4 x1s

3 x1s
2 x1s 1

x2s
4 x2s

3 x2s
2 x2s 1

x3s
4 x3s

3 x3s
2 x3s 1

4 $ x1s
3 3 $ x2s

2 2 $ x1s 1 0

4 $ x3s
3 3 $ x3s

2 2 $ x3s 1 0

c =

a
b
c
d
e

v =

y1
y2
y3
y1s
∏

y3s
∏

We solve [14] for c as [15]c = M−1 $ v

x1s, x2s and x3s are always -1, 0 and 1, so M-1 is a constant matrix:

[16]M−1 =

−0.5 1 −.5 −0.25 0.25
0.25 0 −0.25 0.25 0.25

1 −2 1 0.25 −0.25
−0.75 0 0.75 −0.25 −0.25

0 1 0 0 0

Since the scaled matrix inverse is independent of the functions and the splice points, we need not
calculate it each time we find a splice: it is pre-computed and appears as a constant in the program.
Because of the scaling we chose, the inverse matrix elements are simple and exact as shown. This
means no round-off error can result from matrix inverse, which would happen with un-scaled x-values.

The c vector in [15] is the scaled coefficients; but we want the un-scaled result y = s(x). This is found
with equation [9] where

[17]xs =
x−x2

h

so s(x) can be calculated with the TI-89/92+ polyEval() function:

polyEval({a,b,c,d,e},k*(x-x2))

Do not expand the splice polynomial with the relationship shown in [17]! While this may seem to
simplify the polynomial, it undoes the benefit of scaling, and the resulting polynomial is again unstable.

Ultimately we use a single function for f(x), which is implemented as a nested when() function:

when(x<x1,f1(x),when(x<x3,s(x),f2(x)))

or, in terms of the splice evaluation

when(x<x1,f1(x),when(x<x3,polyEval({a,b,c,d,e},k*(x-x2)),f2(x)))
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There are several typical operations we want to perform with the splice, such as interpolation,
differentiation, integration, and solving for the inverse, that is, solve y=s(x) for x, given y. Interpolation is
a simple matter of scaling x to xs and evaluating the splice polynomial, as just shown. Following
sections show how to do integration, differentiation, and solving for the inverse. I also include a user
interface routine to find the splice coefficients, which eases entry of the input parameters and
calculates the fit errors.

You can use the same basic ideas I have described to develop higher-order splices. For example, you
could use a 6th-order splice which forces the second derivatives to match at the interval endpoints, or
an 8th-order splice that forces matching second- and third-order derivatives at the endpoints. You
could change the 4th-order splice to a fifth-order splice which specifies a first derivative at the interval
midpoint x2. 

The function splice4()

The function shown below, splice4(), implements the technique described above. The arguments are
defined in the function header comments

splice4() returns the splice polynomial coefficients as a list {a,b,c,d,e}, which can be used directly with
polyEval() to find s(x). The listing below includes comments which are not in the splice4.9xf file in
tlcode.zip.

splice4(y_1,y_2,y_3,yp1,yp3)
Func
©(y1,y2,y3,y1',y3') 4th-order splice
©27jan02/dburkett@infinet.com

© Input arguments

© f1(x) and f2(x) are the two functions to be spliced between x1 and x3. 

© y_1 f1(x1)
© y_2 s(x2)
© y_3 f2(x3)
© yp1 f1'(x1), scaled such that f1'(x1) = h*f1'(x1)
© yp3 f2'(x3), scaled such that f2'(x3) = h*f2'(x3)

© Output:
© Returns {a,b,c,d,e} where s(xs) = a*(xs)^4 + b*(xs)^3 + c*(xs)^2 + d*(xs) + e

© Solve for scaled coefficients
© Find list 'c' of scaled coefficients {a, b, c, d, e} by solving
©
©              --    --
©              | y_1  |  (y1 = f1(x1))
©              | y_2  |  (y2)
© c = M^(-1) * | y_3  |  (y3) = f2(x3))
©              | yp1  |  (scaled value of f1'(x1))
©              | yp3  |  (scaled value of f2'(x3))
©              --    --
©
© M^(-1) has been pre-computed. The following expression is all one line.

mat▶list([⁻.5,1,⁻.5,⁻.25,.25;.25,0,⁻.25,.25,.25;1,⁻2,1,.25,⁻.25;⁻.75,0,.75,⁻.25,⁻.25;0,1,
0,0,0]*[y_1;y_2;y_3;yp1;yp3])

EndFunc
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The following example uses splice4() to splice two approximating functions.

Example: approximate the sin() function

Suppose we want to estimate sin(x) for 0 < x < 0.78 radians. We have found these estimating
functions:

for x > 0 and x < ~0.546 [18]f1(x) = k1 $ x
3 + k2 $ x

2 + k3 $ x + k4

k1 = −0.15972286692682 k3 = 1.0003712707863
k2 = −0.00312600795332 k4 = −4.74007298E − 6

for x > ~0.546 and x < 0.78 [19]f2(x) = k5 $ x
2 + k6 $ x + k7

k5 = −0.3073521499375 k7 = −0.04107647476031
k6 = 1.1940610623813

The first step is to set the center of the splice, x2. We want to set the splice center near the boundary
between f1(x) and f2(x), so as a starting point we plot the difference between the two estimating
functions, which is f2(x) - f1(x). We plot the difference instead of the functions themselves, because both
functions are so close to sin(x) that we would not be able to visually distinguish any difference. The plot
below shows the difference over the range 0.45 < x < 0.65. 

For this example the difference plot crosses the x-axis, so the functions intersect at this point. We
choose this point as the splice center, so that the splice will not have to span a large distance between
the two functions. Solving for the root gives

x2 = 0.549220479094

In some cases, the two functions will not intersect at all, or at least in the desired splice range. In this
case, a good choice for the splice center is the value of x at which the function difference is a
minimum.

The next step is to set the width of the splice, which in turn sets the half-width h. Assuming the two
estimating functions are both reasonably accurate, we want to make the splice rather narrow, but if we
make it too narrow, accuracy degrades because of loss of significant digits when solving for the splice
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coefficients. For this example, I set h = 0.001, and we will verify that this is not too small. This means
that the splice will be fit from about x1 = 0.54822 to x3 = 0.55022.

All that remains is to calculate the other splice4() arguments, with these steps.

In the Y= editor, define some functions to make the calculations (and plotting) easier. Note that the
coefficients k1 to k6 have already been stored.

y1= polyEval({k1,k2,k3,k4},x)
y2= polyEval({k5,k6,k6},x)
y3= sin(x)
y4= y1(x)-y3(x)
y5= y2(x)-y3(x)
y6= polyEval(spl4,(x-x2)*k)
y7= y6(x)-y3(x)

y1 and y2 are f1(x) and f2(x). y3 is the function to be estimated. y4 and y5 find the error between the
model equations and the function to be estimated. y6 will calculate the splice function, and y7 will find
the splice function error. Note that k = 1/h.

Next, enter these commands in the entry line:

.54922048→x2

.001→h
1/h→k
y1(x2-h)→yy1
y1(x2)→yy2
y2(x2+h)→yy3
h*(y1(x),x)|x=x2-h→yd1
h*(y2(x),x)|x=x2+h→yd2

Finally, call the splice4() with the calculated arguments and save the result in spl4:

math\splice4(yy1,yy2,yy3,yd1,yd2)→spl4

Next we will ensure that the splice function meets the requirements. First, check the errors at x1, x2 and
x3. These expressions should all be near zero:

y1(x2-h)-y6(x2-h) returns  2E-14
y1(x2)-y6(x2) returns  0
y2(x2+h)-y6(x2+h) returns  2E-14

Next check the derivative errors at the splice endpoints. The derivative errors should be near zero. If
we calculate the derivative errors (incorrectly!) by directly differentiating the splice function, we get 

(y1(x),x)-(y6(x),x)|x=x2-h returns 3.7629E-8
(y2(x),x)-(y6(x),x)|x=x2+h returns  7.446E-9

The errors seem small enough, but calculating the derivatives correctly (as shown below) gives the
true errors:

(y1(x0),x0)-k*(polyEval(spl4,x),x)|x=-1 and x0=x2-h returns -6.087E-11
(y2(x0),x0)-k*(polyEval(spl4,x),x)|x=1 and x0=x2+h returns 3.601E-11

So far, the splice seems to work well. As a final check, we graph the splice function over the splice
interval. In the Y= editor, use [F4] to select y4, y5 and y7. Because f1(x), f2(x) and the splice function
are all so close together, plotting these error functions gives a better picture of the splice fit. To set the
x-axis range, press [WINDOW] and set xmin to x2-h, and xmax to x2+h. Press [F2] [A] to plot the
splice, which results in this graph:
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The two solid traces are f1(x) and f2(x), relative to sin(x), and the dotted trace is the splice function,
relative to sin(x). Note that the splice slope appears to match f1 and f2 at the endpoints, and it passes
through x2, as we specified. Based on the numerical check results, and the plotted result, it appears
that we have a splice that we can use. (Note: to get the dotted trace, I set the plot Style for y7 to Dot,
and the plot resolution to 2).

However, the splice is less than f1 and f2 over the entire range. Assuming that f1 and f2 accurately
model the sin() function, we may prefer that the splice be above the two functions over the splice
interval. This is accomplished by changing the value of y2. One reasonable value is the average of the
values of f1(x1), f1(x2) and f2(x3). This is easily calculated with

mean({y1(x2-h),y1(x2),y2(x2+h})→yy2

We find and save the splice coefficients as before with

math\splice4(yy1,yy2,yy3,yd1,yd2)→spl4

and the splice now looks like this:

Note that the splice slopes still match the functions at the interval endpoints, but now the splice is
above both functions.

Differentiating the splice

To differentiate the splice, do not expand the splice polynomial and differentiate it: accuracy will suffer
because of round-off error. Instead, first scale x to xs, find s'(xs), then scale this result. In other words,

[20]d
dx s(x) = 1

h $
d

dxs
a $ xs

4 + b $ xs
3 + c $ xs

2 + d $ xs + e
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or

[21]d
dx s(x) = 1

h $ 4 $ a $ xs
3 + 3 $ b $ xs

2 + 2 $ c $ xs + d

where xs = k $ (x − x2)

The higher-order derivatives are

[22]d2

dx2 s(x) = 1
h2 $ 12 $ a $ xs

2 + 6 $ b $ xs + 2 $ c

[23]d3

dx3 s(x) = 1
h3 $

(24 $ a $ xs + 6 $ b)

[24]d4

dx4 s(x) = 24
h4 $ a

The following function can be used to find the splice derivative of any order.

spli4de(x,x2,h,cl,o)
Func
©(x,x2,h,k,{list},order) 4th-order splice derivative
©9apr02/dburkett@infinet.com

© Input arguments
©
© x The point at which to find the derivative
© x2 The splice interval midpoint
© h The splice interval half-width
© cl the list of splice function coefficients
© o the order of the derivative; o > 0

local xs,a,b,c,d,k

cl[1]→a © Extract polynomial coefficients
cl[2]→b
cl[3]→c
cl[4]→d
1/h→k © Invert half-width to simplify later calculations
k*(x-x2)→xs © Scale x

© Find derivative or return error string. The following when() is all on one line.

when(o≤0,"spli4de err",
when(o=1,k*polyeval({4*a,3*b,2*c,d},xs),
when(o=2,k^2*polyeval({12*a,6*b,2*c},xs),
when(o=3,k^3*(24*a*xs+6*b),when(o=4,k^4*24*a,0)))))

EndFunc

spli4de() returns the string "spli4de err" if the order o is less than 1. No testing is done to ensure the
order is an integer. Note that derivatives with order greater than four are zero.

You should not, in general, use the splice function to estimate derivatives of order greater than the first,
even though spli4de() provides that capability. Since we have not constrained the splice to match the
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higher order derivatives, they can vary wildly. In the example above, I fit a splice to two simple
polynomials. The table below shows the derivative errors at the splice boundaries x1 and x3.

-2.43E70-2.43E704
-24,381024,258-.95833
-6.10-0.6147-6.06-0.53162

-3.6E-110.85586.09E-110.85291
Error at x3f2'(x3)Error at x1f1'(x1)Derivative order

As expected, the first derivative errors at the splice boundaries are small, but the errors are so large for
derivatives of orders two and greater as to make the derivative estimate useless.

Integrating the splice

As with the derivative, we find definite integrals with the scaled polynomial and the scaled xs values. If

andI = ¶xa
xb s(x)dx Is = ¶xsa

xsb ss(xs)dxs

then I = h $ Is

which is derived in a later section in this tip. We integrate the scaled splice function ss(xs) with the
scaled limits xsa and xsb found with

xsa = 1
h $ xa − x2 xsb = 1

h $ xb − x2

The following function can be used to integrate the splice function.

spli4in(xa,xb,x2,h,cl)
Func
©(xa,xb,x2,h,{list}) 4th-order splice integral
©9apr02/dburkett@infinet.com

© Input arguments:
© xa lower integration limit
© xb upper integration limit
© x2 splice interval midpoint
© h splice interval half-width
© cl splice coefficient list

h*·(polyeval(cl,xs),xs,(xa-x2)/h,(xb-x2)/h)

EndFunc

spli4in() does not check xa and xb to ensure that they are within splice interval. Results may be
inaccurate when integrating beyond the interval limits.
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Solving for the splice inverse

Some applications require finding x such that s(x)=y, given y. This can only be done if the splice is
strictly monotonic on the splice interval, that is, the splice s(x) has no minimum or maximum on the
interval.

If the splice is monotonic, finding the inverse is a simple matter of using nSolve() as shown in the
function below. We solve the scaled splice function, then un-scale the returned xs to find x. Since we
are using the scaled splice function, we know that the solution xs is greater than -1 and less than 1, so
we use those as the solution bounds.

spli4x(y,x2,h,cl)
Func
©(s(x),x2,k,{list}) 4th-order splice inverse
©9apr02/dburkett@infinet.com

© Input arguments:
© y value of s(x) at which to find x
© x2 splice interval midpoint
© h splice interval half-width
© cl list of splice coefficients

(nSolve(polyEval(cl,xs)=y,xs)|xs≥⁻1 and xs≤1)*h+x2

EndFunc

This method is satisfactory if you only need a few values of the inverse. There is a faster method to
find many values: find an inverse fourth-order splice to calculate x directly, given f(x). This is simple
once we have found the original splice for y = f(x). We can use splice4() to find the inverse splice; we
just exchange the x's for y's and correct the end-point derivatives:

splice4(xx1,xx2,xx3,xd1,xd2)

where xx1 and xx3 are the interval bounds, as before. For the scaling to work correctly, however,
s(xx2) must be be halfway between yy1 and yy3, so we find yy2 with

yy1 = f1(xx1) yy3 = f2(xx3) yy2 =
yy1+yy3

2

Given yy2, we solve for the corresponding xx2 with spli4x() above:

spli4x(yy2,xx2x,hx,spl4x)→xx2

but note that xx2x, hx, and spl4x are the values for the original splice, that is, y = s(x). Find they y-axis
half-width hy with

abs(yy2-yy1)→hy

then you can find the inverse derivatives with

hy*((f1(x),x)|x=xx1)→xd1
hy*((f2(x),x)|x=xx3)→xd2

We now have all the arguments for splice4().  To find x given s(x), use

polyeval(spl4y,ky*(s(x)-yy2))

where ky = 1/hy.

10



This inverse polynomial is not the true inverse of the original splice. It is simply a polynomial which
passes through the same three points as the splice, and has the same derivatives at the endpoints.  If
the splice is used for a narrow interval, the accuracy can be very good. Before using the inverse splice,
you should check the accuracy. This is easily accomplished by graphing the error in the estimated
x-values, found from

error = si(s(x)) - x

where s(x) is the splice function and si(x) is the inverse splice function. For the example shown above,
this is the error in x:

The error in x is about ±2.4E-10, so this inverse is accurate to about 9 significant digits. Note that the
error is zero at the endpoints and in the center, as it should be.

The function spli4inv(), shown below, finds the inverse splice by applying the steps described above.

spli4inv(f1,f2,x2,h,c)
Func
© ("f1(x)","f2(x)",x2,h,coeff_list)
© output: {a,b,c,d,e,y2,hy}
© 4th-order splice inverse polynomial
© 10may02/dburkett@infinet.com
© calls math\spli4x(), math\splice4()

© Input arguments:
©
© f1 f1(x), passed as a string, for example "y1(x)"
© f2 f2(x), passed as a string, for example "y2(x)"
© x2 splice midpoint for s(x)
© h splice half-width for s(x)
© c list of splice coefficients for s(x)

© Output: {a,b,c,d,e,y2,hy}
©  where si(y) = a*ys^4 + b*ys^3 + c*ys^2 + d*ys + c
©  and ys =(y-y2)/hy
©  so find x = polyeval({a,b,c,d,e},(y-y2)/hy)

local yy1,yy2,yy3,yd,x1,x2,x3,xp1,xp3,hy
©
© x1 the original left interval bound; treated as si(y1)
© x2 s(x) such that x2=si(yy2)
© yy1 f1(x1)
© yy2 the mean of yy1 and yy3
© yy3 f2(x3)
© hy y-interval half-width
©

expr("define f1(x)="&f1) © Define local functions to be spliced
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expr("define f2(x)="&f2)

x2-h→x1 © Find splice interval bounds
x2+h→x3

f1(x1)→yy1 © Find si(x1), si(x3)
f2(x3)→yy3
(yy1+yy3)/2→yy2 © Find splice interval midpoint
math\spli4x(yy2,x2,h,c)→x2 © Solve for x at interval midpoint
abs(yy2-yy1)→hy © Find y-axis half-width
hy/((f1(x),x)|x=x1)→xp1 © Find dx/dy at x1 and x2
hy/((f2(x),x)|x=x3)→xp3

augment(math\splice4(x1,x2,x3,xp1,xp3),{yy2,hy}) © Solve for splice coefficients

EndFunc

Note that the output list includes y2 and hy in addition to the coefficient list, since you will need them to
evaluate the inverse polynomial. If you have saved the output list in list1, then use

left(list1,5)

to extract just the polynomial coefficients, and 

list[6]

to get y2, and

list[7]

to get hy.

User interface program for splice4()

The user interface program shown below, spli4ui(), automates the process of calculating a splice and
checking the results. spli4ui() finds the splice coefficients and saves them. It also calculates and
displays the errors for s(x) and the first derivatives.

spli4ui() uses a symbolic variable ä. If you have a variable ä in the current folder, it will be deleted.

spli4ui() assumes that the derivatives of the functions to be spliced can be found with the built-in
derivative function. For functions which cannot be differentiated by the calculator, you can still calculate
a splice, but you cannot use spli4ui().  See tip [6.26], Accurate numerical derivatives with nDeriv() and
Ridder's method, to find the necessary derivatives.

spl4ui()
Prgm
©splice4() user interface
©16apr02/dburkett@infinet.com

© Calls math\splice4()

© Local variables
local
l,m,errx1,errx2,errx3,errd1,errd3,x1,äx2,x3,äh,yy1,äyy2,yy3,k,äf1,äf2,yp1,yp2,splc,äout

© l drop-down selection variable
© m drop-down selection variable
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© äf1 f1(x)
© äf2 f2(x)

© x1 lower interval bound
© äx2 interval midpoint
© x3 upper interval bound

© yy1 f1(x1)
© äyy2 s(x2)
© yy3 f2(x3)

© äh interval half-width
© yp1 f1'(x1)
© yp2 f2'(x3)
© k scaling factor
© splc splice coefficients list
© äout name of coefficient list output variable

© errx1 splice error at x1 
© errx2 splice error at x2
© errx3 splice error at x3
© errd1 derivative error at x1
© errd3 derivative error at x3

© Test for existing user input defaults variable spl4v; create if necessary
if gettype(spl4v)="NONE" then
 {"","","0.",".001","0.",""}→spl4v
endif

© Extract user input defaults
spl4v[1]→äf1
spl4v[2]→äf2
spl4v[3]→äx2
spl4v[4]→äh
spl4v[5]→äyy2
spl4v[6]→äout

© Prompt for user input
dialog
 title "SPLI4UI"
 request "f1(x)",äf1
 request "f2(x)",äf2
 request "Coef var name",äout
 request "Splice center x2",äx2
 request "Splice half-width h",äh
 dropdown "s(x2) method:",{"mean","center","manual"},m
 request "manual s(x2)",äyy2
enddlog
if ok=0:return © Return if [ESC] pressed

{äf1,äf2,äx2,äh,äyy2,äout}→spl4v © Save user input defaults

expr(äx2)→äx2 © Convert user input strings
expr(äh)→äh
expr(äyy2)→äyy2
expr("define äf1(x)="&äf1) © Create functions f1() and f2()
expr("define äf2(x)="&äf2)

1/äh→k © Find scaling factor
äx2-äh→x1 © ... and splice interval bounds
äx2+äh→x3

äf1(x1)→yy1 © Find splice bound y's
äf2(x3)→yy3

if m=1 then © Set yy2 for s(x2) method:
(yy1+äf1(äx2)+yy3)/3→äyy2 © ... 'mean' method
elseif m=2 then
 (äf1(äx2)+äf2(äx2))/2→äyy2 © ... 'center' method
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endif

(äf1(ä),ä)|ä=x1→yp1 © Find derivatives at interval bounds
(äf2(ä),ä)|ä=x3→yp3

math\splice4(yy1,äyy2,yy3,äh*yp1,äh*yp3)→splc © Find splice coefficients
splc→#(spl4v[6]) © Save coefficients to user variable

polyeval(splc,k*(x1-äx2))-yy1→errx1 © Find splice errors at bounds and midpoint
polyeval(splc,0)-äyy2→errx2
polyeval(splc,k*(x3-äx2))-yy3→errx3

k*((polyeval(splc,ä),ä)|ä=⁻1)-yp1→errd1 © Find derivative errors at bounds
k*((polyeval(splc,ä),ä)|ä=1)-yp3→errd3

clrio © Display errors on Program I/O screen
disp "Absolute errors:"
disp "s(x1):  "&string(errx1)
disp "s(x2):  "&string(errx2)
disp "s(x3):  "&string(errx3)
disp "s'(x1): "&string(errd1)
disp "s'(x3): "&string(errd3)

EndPrgm

I will use spli4ui() to create the splice shown in the example above. On starting spli4ui(), the following
dialog box is displayed:

This screen shot shows the dialog box with the parameters entered:

For f1(x) and f2(x), I can just enter y1(x) and y2(x), since I have previously defined these functions in
the Y= Editor. I set the splice center and half-width, and chose 'center' for the s(x2) method. I need not
enter a value for 'manual s(x2)', since I am not using the manual method. After pressing [ENTER], the
errors are shown on the program I/O screen:
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spli4ui() supports three options to set s(x2): center, mean and manual. With the 'manual' s(x2) method,
you specify s(x2) in the 'manual s(x2)' field. The 'center' method sets

s x2 =
f1 x1 +f2 x2

2

so use the 'center' method to force the splice midway between two functions which do not intersect, or
to force the splice through f1(x2) = f2(x2). The 'mean' method sets

s x2 =
f1 x1 +f1 x2 +f2 x3

3

so use this method to force the splice through a point away from both functions. For example, this plot
shows the splice and function differences with the mean method:

Scaling the derivatives

Since the x- and y-data are scaled to avoid a singular matrix, we must also scale the derivatives of f1(x)
and f2(x) to be consistent with the scaled x values. Starting with a general function

y = f(x)

and the general scaling equations xs = p $ x + q ys = r $ y + s

we solve for x and y, x =
xs−q

p y =
ys−s

r

substitute these expressions in the function definition
ys−s

r = f
xs−q

p

and solve for ys ys = r $ f
xs−q

p + s
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then take the derivative
dys
dxs

= r $ d
dxs

f
xs−q

p

or [1A]
dys
dxs

= r
p $

d
dxs

f(xs − q)

Now since xs = p $ x + q

xs + dxs = p $ x + p $ dx + q = p $ x + q + p $ dx
xs + dxs = xs + p $ dx

so [2A]dxs = p $ dx

Replace [2A] in [1A]
dys
dxs

= r
p $

d
p$dx f(xs − q)

or
dys
dxs

= r
p $

d
dx f

xs−q
p

or simply
dys
dxs

= r
p $

d
dx f(x)

which is the relation we wanted. In this splice application, we scale only x, not y, so r = 1. In terms of
the actual scaling variables x2 and h, the scaling is

xs = 1
h $

(x − x2) = 1
h x −

x2
h

so by inspection p = 1
h

then
dys
dxs

= h $ d
dx f(x)

Scaling the splice integral

Given the scaled splice polynomial ss(xs), we can easily find the definite integral

Is = ¶xsa
xsb ss(xs)dxs

but we really want the integral of the unscaled function:

I = ¶xa
xb s(x)dx

Using the definition of the definite integral: [1B]Is = limnd∞ ✟m=1

∞
ss(xs ) $ ✁xsm

[2B]I = limnd∞ ✟m=1

∞
s(x) $ ✁xm

where [3B]✁xsm =
xsb−xsa

n
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[4B]✁xm =
xb−xa

n

Solve [3B] for n, replace in [4B], and define a new variable c such that

[5B]c = ✁xm
✁xsm

=
xb−xa

xsb−xsa

then [6B]✁xsm = ✁xm
c

Replace [6B] in [1B] for [7B]Is = limnd∞ ✟m=1

∞
ss(xs ) $

✁xm
c

Now, since ss(xs) = s(x), for any given x and its equivalent scaled xs, we move the 1/c constant outside
the sum and limit, and [7B] becomes

Is = 1
c limnd∞ ✟m=1

∞
s(x) $ ✁xm

which, on comparison with [2b], is just Is = 1
c $ I

or [8B]I = c $ Is

We can also express [8B] in terms of the original scaling factor k. The scaling is defined by

xsa = 1
h xa − x2 xsb = 1

h xb − x2

which we can solve for h: h =
xa−xb

xsa−xsb

and comparison with [5B] gives h = c

so we have the final desired result: I = h $ Is
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