
[6.60] Faster, more accurate exponential integrals

A post on the comp.sys.hp48 newsgroup announced that the HP-49G did not accurately find a
numerical value for this integral

¶
−3.724

∞
e−x

x dx

Except for a sign change, this is identical to the special function called the exponential integral:

Ei(x) = − ¶
−x

∞
e−x

x dx

The TI-89 / TI-92 Plus also cannot find accurate values for this integral, and it is no wonder, since at
the integrand singularity at x = 0, the limit is +infinity from the right and -infinity from the left. One
expedient solution is a routine specifically designed to find the exponential integral:

ei(x)
Func
©(x) exponential integral Ei
©13jul02/dburkett@infinet.com

local eps,euler,fpmin,maxit,k,fact,prev,sum1,term

6⁻12→eps © Desired relative accuracy
.57721566490153→euler © Euler's constant
100→maxit © Maximum iterations allowed for convergence
1⁻900→fpmin © Number near floating-point minimum

if x≤0:return "ei arg error" © Argument must be > 0
if x<fpmin then © Handle very small arguments
 return euler+ln(x)
elseif x≤⁻ln(eps) then © Use power series for x < 25.840
 0→sum1
 1→fact
 for k,1,maxit
 fact*x/k→fact
 fact/k→term
 sum1+term→sum1
 if term<eps*sum1
 return sum1+ln(x)+euler
 endfor
 return "ei failed series" © Return error string if convergence fails
else © Use asymptotic expansion for large arguments
0→sum1
 1→term
 for k,1,maxit
 term→prev
 term*k/x→term
 if term<eps:goto l1
 if term<prev then
 sum1+term→sum1
 else
 sum1-prev→sum1
 goto l1
 endif
 endfor
 lbl l1
 return ℯ^(x)*(1+sum1)/x
endif

EndFunc

1

I ported this algorithm, from Numerical Recipes in Fortran, to TI Basic. The input argument must be
greater than zero, and error message strings may be returned. You can check for this condition by
using getType() on the result.

This table shows some results for the original example problem.

56 sec2-16.2967 8867 2016nInt(ℯ^(-x))/x,x,-3.724,0) +
nInt(ℯ^(-x))/x,x,0,∞)

53 sec1-13.5159 0839 6945nInt(ℯ^(-x))/x,x,-3.724,∞)
134 sec2-16.2967 8867 2016·(ℯ^(-x))/x,x,-3.724,∞)
2 secAbout 11-16.2252 9269 7647-ei(3.724)

Execution
time

Correct
significant digitsResultMethod

It is interesting that the built-in ·() function is slightly more accurate that the purely numerical nInt(),
perhaps because it symbolically finds the singularity at x = 0, and integrates over two ranges divided at
x = 0. Circumstantial evidence for this supposition is provided by that fourth method, which manually
uses nInt() over the two ranges, and returns the same result as ·().

Bhuvanesh Bhatt has also written a function for Ei(x), and you can get it at

http://tiger.towson.edu/~bbhatt1/ti/

This is a C function called ExpIntEi(), found in his C Special Functions package. You will need the
usual hacks to use this as a true function on HW2 calculators; see the site for details.

For more information on the exponential integral, try

Handbook of Mathematical Functions, Milton Abramowitz and Irene A. Stegun, Dover, 1965. Section 5
describes and defines Ei(x), as well as its related integrals and interrelations. I used the table of
numerical values to test ei(x).

Atlas for Computing Mathematical Functions, William J. Thompson, Wiley-Interscience, 1997.
Thompson calls Ei(x) the 'exponential integral of the second kind', and coverage begins in section
5.1.2. You can often get this book inexpensively from the bookseller Edward R. Hamilton, at
http://www.hamiltonbook.com/

As mentioned, the algorithm for ei(x) comes from

Numerical Recipes in Fortran, 2e, William H. Press et al, Cambridge University Press, 1992. Section
6.3 covers the exponential integrals. This book is available on-line at http://www.nr.com.

You can also use ei(x) to find values for the logarithmic integral li(x):

x > 1li(x) =“
0

x
dt

ln(t)

since li(x) = Ei(ln(x))

2

