[7.28] Use long strings with setMode() in custom menus

The Custom menu structure lets you customize the 89/92+ for more efficient operation. You can
replace the function key menu tabs at the top of the screen with more useful operations. However,
there is a limit to the length of the strings you can use in the Item argument. This limit prevents the use
of the long strings needed for some of the setMode() function arguments. The solution to this dilemma
is to use the number codes for the setMode() arguments, instead of the strings themselves.

Suppose we want to make a custom menu to set the Exact/Approx modes to Auto, Exact or
Approximate. You might try this program, but it will not work:

customl()
Prgm

custom

title "Modes"

item "setmode(""Exact/Approx"",""Auto"")"

item "setmode(""Exact/Approx"",""Exact"")" <- FAILS HERE
item "setmode(""Exact/Approx"",""Approximate"")"
endcustm

custmon

EndPrgm

The string for the second Item line, to set the mode to Exact, causes a "Dimension" error because the
string is too long. The solution is to create shorter strings by using the number string codes for
setMode(), instead of the strings themselves. These codes are listed on page 584 of the online 89/92+
Guidebook.

Note also the use of the double quote marks around the item strings. These are used to embed double
quotes in the Item arguments, which are themselves strings.

This is how the program looks using the codes instead of the strings:

customl()
Prgm

custom

title "Modes"

.item llsetmode(llll14llll’lllllllll)ll
.item llsetmode(llll14llll’llllZIlll)ll
.item llsetmode(llll14llll’llll3llll)ll
endcustm

custmon

EndPrgm

"14" is the code for Exact/Approx. "1", "2" and "3" are the codes for Auto, Exact and Approximate,
respectively. This program works, but you can't really identify tell from the displayed menu which item
is which. A solution to this problem is to use extra Iltem commands, just as labels. With this solution,
the program now looks like

customl()
Prgm

custom
title "Modes"



item "Set Auto:"

.item llsetmode(llll14llll’lllllllll)ll
item "Set Exact:"

.item llsetmode(llll14llll’llllZHH)ll
item "Set Approx:"

.item llsetmode(llll14llll’llll3llll)ll
endcustm

custmon

EndPrgm

This program will create a menu for function key F1 that looks like this:

1:Set Auto:
2:setmode("14","1")
3:Set Exact:
4:setmode("14","2")
5:Set Approx:
6:setmode("14","3")

There are a few problems with this method. First, it makes the menu twice as long as it really needs to
be. Second, it is an awkward user interface, because the user's natural inclination is to press [1] for
Auto mode, while it is really key [2] that needs to be pressed.

These objections can be overcome by using both codes and strings in the Item arguments. Use the
"14" code to shorten strings, but use the strings themselves for Auto, Exact and Approximate:

customl()
Prgm

custom

title "Modes"

.item llsetmode(llll14llll’llllAutOHH)ll

item "setmode(""14"",""Exact"")"

item "setmode(""14"",""Approximate"")"
endcustm

custmon

EndPrgm

This program makes a menu that looks like this:

l:setmode("14","Auto")
2:setmode("14","Exact")

3:setmode("14","Approximate")

If you switch modes often, this type of menu is faster than using the MODE menu. Using the MODE
menu takes at least 7 keystrokes. The Custom menu method requires 3 keystrokes. However, the
Custom menu method unnecessarily leaves the commands in the history display. You need to press
[ENTER] after selecting the menu item, which is just one more keystroke. Finally, the appearance of
the menu items is rather poor in that all the SetMode() details are displayed. Still, it is an improvement
over using the [MODE] key and cursor control keys to make a simple mode change.

(Credit for use of code strings declined)



