[7.32] Documenting programs
Program documentation answers these questions about your programs:

What problem does the program solve?

How do | use the program?

How does the program get its results?

How can | change the program to better meet my needs?

HPobd -~

Documentation is work and it takes time. For most programmers, documentation is a chore, and not
nearly as interesting as designing and coding. If you are just writing programs for yourself, the
documentation is obviously your own business. However, if you distribute your programs to others, |
assume you really want people to be able to use them. Some useful programs may be so simple that
they don't need any documentation, but | have seen any, yet.

The main goal of documentation is to answer the questions above, as quickly as possible for both you
and the user. While you may be rightfully quite proud of your program, the user probably does not
share your enthusiasm. The user needs to solve a problem, and it looks like your program might do it.
Your responsibility in creating the documentation is to meet the user's needs. Those needs can be
grouped in two broad categories: answering questions and giving warnings. Some of the questions are
obvious, such as: how do | install the program? how do | run it? how do I fix this error? The warnings
are less obvious but just as important. You need to inform the user as to side effects that might not be
obvious. Some examples of these side effects might be changing the modes, creating folders or
creating global variables.

Documentation is just writing. Clear writing is a skill which, like any other, takes practice and
commitment. The more you do it, the better (and faster) you will get. In the remainder of this tip, | give
some suggestions for creating usable documentation. The suggestions are organized around the four
questions that users have.

What problem does the program solve?

If you have written a program to solve a problem, you are quite familiar with the problem. It may be a
problem in your field of expertise that you solve every day. But other users don't necessarily have your
background. They might just be learning about the field. They might be unsure of the terminology and
solution techniques. To meet those users' needs, you must have a short, clear, complete description of
the problem.

How do I use the program?
Your documentation should answer these questions for the user:

* Does the program run on either the 89 or the 92+? Are there special versions for each calculator?
* Does the program require a specific version of the AMS?

* How much ROM does the program take?

* Can the program be archived?

* How do | install the program?

* How do | uninstall the program?

* Does the program need other functions or programs?

* Can the program be intstalled in any folder, or does it have to be in a specific folder?

* How do | start the program?
* How do | exit (quit) the program?

* What Mode settings are needed? Does the program change my Mode settings? Does the program
restore my mode settings?

* Does the program change the current folder? Does it restore the previous folder?

* Does the program change my Graph screen? Does it change my Program 1/O screen? Does the
program change any of my Y= Editor settings?

* Does the program leave any Data plot definitions behind?

* Does the program leave behind any global variables? What are there names? What happens if |
delete them, then run the program again?

* What other side effects does this program have?

* How does the program get its inputs from me? What are valid inputs? What are the units for the
inputs? Can the inputs be real or complex? If my input is a function name, how do | specify that
function?

* If this is a function, how do | call it? What are the calling arguments? Give examples.

* How does the program display the output results? What are the units? Are the results stored
anywhere?

* How accurate are calculated results? How can | check the accuracy? Does the accuracy degrade
for some input ranges?

* How long does it typically take for the program to get an answer?

* If the program duplicates a built-in function, why is it better? Is it faster, more accurate, or is it more
general?

* How much testing did you do on this program?

* Does the program display any error messages? What do the error messages mean? How do | fix
the errors?

* Does the program have built-in help? How do | get to it? Can | delete it to save memory?
* Where do | get help, if | need it?

* What is the version of this program?

* If this is a new version of the program, how is it different from the previous version?

* Does this program have any known bugs? How do | avoid them?

* Is this program based on someone else's work? How did you improve on their effort?

This is a fairly complete list, and all of these items might not be appropriate for all programs. You just
have to use your judgement as to what best serves the user.

How does the program get its results?

This section of the documentation describes how the program does what it does. For various reasons,
you might not want to tell the user how your program works. | believe this is a disservice to the user. If |
am counting on your program to give me a correct answer, | deserve some assurance that it really
works. In part, this assurance can come from knowing what algorithms you used to get the results. If
the calculation depends on some built-in function, for example, solve() or nint(), and you tell me that,
then | know that your program is limited by the performance of those functions, and | can evaluate the
results accordingly.

This section of the documentation can be fairly short. If | really want to know all the intricate details, |
can examine your source code. The real purpose of this section is to give an overview.

How can | change the program to better meet my needs?

It may be quite likely that your program almost does what the user wants. In this case, the user might
want to modify the program. To do this, she needs to understand how the program works, and this
means code documentation. Code documentation differs slightly from user documentation, because
both the intended audience and the purpose are different. User documentation meets the user's

needs, and the user is not necessarily a programmer. Code documentation meets the needs of a
programmer. Useful code documentation is actually a field of its own, and I'm only going to give a brief
overview of 'best practices', based on my personal experience of programming and supervising
programmers. The documentation also interacts to a great degree with the underlying design of the
code, which is a topic that deserves a tip of its own.

A program consists essentially of data, calculations, and flow control. Because these three attributes
interact with each other, the documentation must specify the interaction, as well as the characteristics
of each of attribute. Data documentation consists of

* Choosing a variable name. Ideally, variable names are long and descriptive. On the 89/92+,
memory is limited, so there is a strong motivation to keep variable names short, to save memory. In
any case, variable names are limited to eight characters, which often precludes truly descriptive
names. This means that descriptive documentation of variables is even more important. Some
simple conventions can help, as well. For example, integer loop counters are traditionally named
with integers i, j, k, I, m and n. Nested loops can use loop counters such as k7 and k2. Some
89/92+ programmers prefer to use Greek or non-english characters, especially for local variables.
Selecting variable names on the 89/92+ is further confounded by the fact that the AMS uses several
common, obvious names as system variables and data.

* Describing the data type: is it a variable or a constant? Is it an integer, a string or a matrix? What
are the valid ranges and dimensions? What is the variable's physical significance? For example,
Vin1 and Vin2 may be two circuit input voltages, and Vout is the output voltage.

* Clarifying variables which change type during the program execution. It is completely legal in Tl
Basic to store a string to a variable which contains an integer, for example. While this improves
efficiency, it can make programs very difficult to understand. Further, it is common (and efficient) to
'reuse’ a local variable when the previous contents are no longer needed.

Documenting calculations is fairly straightforward, particularly if the underlying data is well
documented. Keep in mind, though, that you want to describe the functional intent of the calculation,
not the calculation itself. For example, this isn't too helpful:

©Add 273.15 to templ
templ+273.15>templ

This is better:

oConvert templ from degrees C to degrees K
templ+273.15>templ

Some calculations can be efficiently coded as a single large, complex expression. These are the
calculations that really need good explanations. Remember that the purpose of the description is to
describe why you are doing something, not what you are doing - the 'what' is obvious from the code
itself.

Documenting the flow control is easy if the program structure is logical to begin with. goto's and labels
are discouraged in good structured programming, for good reason, but they can result in the most
possible efficient code when used sparingly. It can be challenging to come up with good label names,
so | just have a few common names for pervasive elements such as mainloop and exit. Error handling
may interrupt normal program flow, so the program comments should make it clear where the error is
handled, and where control is transfered after the error is handled.

Where to put the documentation?

There are at least three possiblities for physically locating the program documentation: in the source
code, as a separate readme text file, or as an 89/92+ text file. Putting the documentation in the source
code file has the advantages that the documentation always travels with the program, but it
dramatically increases the code size and uses up valuable on-calculator memory. Programs are most
commonly documented with a separate readme file. This certainly works, but then the user might not
have access to the documentation when they really need it most.

Creating an 89/92+ text file that includes all the program documentation has these advantages:

* The documentation is on the calculator, with the program, and can be readily accessed. If one user
transfers the program to another user, by calculator, he can also send the text variable, so the new
user has the documentation, too.

* You can use the special 89/92+ characters in the documentation, which is not easily done in a
separate readme file.

* You can include sample calls in the text file, which can be executed directly from the file.

* The user can edit the text file to meet their needs. For example, when they first start using the
program, they may need most of the detailed documentation. As they become more familiar with
the program, they can delete the text they don't need to save memory. Finally, they can add their
own particular comments as needed.

If you use this method, you should give the name of the documentation text variable in the source
code.

