
[7.43] Faster function calls with list and matrix arguments

Function call execution time increases substantially with list and matrix arguments. The increase is
independent of the code executed by the function, so I call it overhead. This tip quantifies the overhead
and shows a method to reduce it, at least for global lists and matrices.

I use various timing results in this tip. All execution time data is for a HW2 TI-92 Plus, AMS 2.05. HW1
calculators run about 17% slower. I tested lists and matrices with random floating point integer
elements, so execution times will be different if the elements are integers or symbolic elements.

Matrix arguments

I used this test program to measure the overhead for a HW2 TI-92 Plus, AMS 2.05:

t()
Prgm
Local k,s,res

Define s(mat)=Func © Define a function with a single matrix argument
 Return 0 © Just return a constant
EndFunc

For k,1,50 © Loop fifty times for better timing resolution, ...
 s(m)→res © ... calling the subroutine with the matrix argument
EndFor

EndPrgm

m is a global matrix, initialized to random integer values with randmat(). Tests with 34 matrices, with up
to 200 rows and 20 columns, resulted in this model equation to estimate the execution time:

[1]T = a + b $ nr + c $ nc + d $ nc $ nr

where T is the execution time for each call, and

nr = number of matrix rows
nc = number of matrix columns

a = 2.5404 E-2 b = 8.2538 E-4 c = 7.615 E-5 d = 8.2447 E-4

This model equation is accurate to about 3%. This table shows some typical overhead times:

373 mS2020
117 mS100
50.5 mS55
538 mS2003
685 mS3200
355 mS1200
438 mS4100
191 mS1100
66.9 mS410
42.0 mS110

Execution time
per call

Number of columns
nc

Number of rows
nr

1

The overhead is about 0.7 seconds for the largest tested matrix. This may not be critical for single
function calls, but it is significant if the function is called repeatedly, as is the case when using the
numeric solver, performing numeric integration, or plotting the function. For example, if the 200 x 3
matrix is passed to a function which is plotted at each of the 240 display pixel columns of the TI-92
Plus, the overhead is about 2.7 minutes.

If more than one matrix is used as a function argument, the overhead predictably increases to about
the sum of the individual overheads of each matrix. For example, if the arguments are two matrices
with dimensions of 50 rows x 2 columns, and 50 rows x 3 columns, the total overhead is about 149 mS
+ 191 mS = 340 mS.

The overhead may be reduced by passing the matrix by reference, instead of by value. For the timing
results and model equation above, the matrix was passed by value, that is, the matrix itself was passed
as the function argument. A typical function call is

f(matrix) (call by value)

To pass the matrix by reference instead of value, the function argument is the matrix name as a string:

f("mat_name") (call by reference)

With the value method, the element [2,3] is accessed with

mat[2,3] (access by value)

With the reference method, the same element is accessed using indirection:

#mat_name[2,3] (access by reference)

where mat_name is the name of the matrix. Indirection, a feature built into TI Basic, is accomplished
when the number character '#' precedes a variable name, for example, #var. This expression does not
return the value of var, instead, it returns the value of the variable whose name is stored as a string in
var. For example, if var contains the string "var2", and the value of variable var2 is 7, then #var returns
7.

The reference method works only when the matrix is a global variable. A variable which is local in a
program or function cannot be accessed by any other function which is called.

These two test routines demonstrate the overhead reduction when using the reference method.

EndPrgmEndPrgm

EndForEndFor
 f2("m")→r f1(m)→r
For k,1,50For k,1,50

EndFuncEndFunc
 Return #mat[1,1] Return mat[1,1]
Define f2(mat)=FuncDefine f1(mat)=Func

Local f2,k,rLocal f1,k,r

© Pass matrix by reference (name)© Pass matrix by value
PrgmPrgm
tref()tval()

2

The tval() routine passes the matrix m by value, and tref() passes the matrix name as a string. tval()
takes about 199 mS for each function call, while tref() takes about 31 mS. This is an improvement of
about 84%.

Even though it is faster to call a function with the reference method, it takes longer to access the matrix
elements with indirection. For some combination of function calls and matrix element accesses the
total execution time is the same for either method. This is called the break-even point. In general, the
total execution time is

T = NcTc + NaTa

where Nc and Na are respectively the number of function calls and element accesses, and Tc and Ta
are the execution times for each function call and element access. More specifically, the total execution
times for each method are

Value methodTv = NcvTcv + NavTav
Reference methodTr = NcrTcr + NarTar

The break-even point is at Tv = Tr. We want to compare the two methods with the same conditions, so
we equate the number of function calls and element accesses for each method:

Ncv = Ncr = Nc Nav = Nar = Na

Equate the expressions for Tv and Tr: NcTcv + NaTav = NcTcr + NaTav

and solve for Nc: or [2]Nc = Na
Tar−Tav
Tcv−Tcr

Nc
Na

= Tar−Tav
Tcv−Tcr

With equation [2], we can find the break-even point at which the two methods have the same execution
time, for some number of function calls and matrix accesses. Tcv is found with equation [1] above, and
Tcr is a constant:

Tcr = 16.88 mS/access

Timing experiments show that the time required to access a matrix element depends on the number of
matrix rows and columns, as well as the element's location in the matrix. The access time also
changes slightly if the indices are constants or variables. Timing data shows that Tar - Tav is relatively
constant at about 5.7 mS, so equation [2] simplifies to

[3]Nc
Na = 5.7 mS

Tcv−16.88 mS

For example, suppose we have a matrix with 50 rows and 3 columns. We use equation [1] to find Tcv =
191 mS, and Nc/Na = 0.033. If the function accesses only three elements (Na=3), then Nc = 0.1. Since
Nc < 1, the reference method is always faster, regardless of the number of function calls. However, if
the function accesses every matrix element (Na = 150), then Nc = 4.95. In this case, the reference
method is faster only if we call the function more than 5 times.

As another example, consider a matrix with 10 rows and 10 columns. Equation [1] gives Tcv = 117 mS,
and Nc/Na = .057. If the function accesses 10 elements, then Nc = .57, so the reference method is
always faster. However, if the function accesses all 100 matrix elements, then Nc = 5.7, so the
execution time is less for the reference method only if we call the function at least 6 times.

3

The general result is that the reference method may be faster if the matrix is large and few elements
are accessed.

List arguments

When lists are passed as function arguments, the call overhead can also be considerable, as this table
shows:

459.8 mS700
269.1 mS400
84.6 mS100
22 mS0

Overhead / function callNumber of list elements

Timing data for lists of 11 sizes results in this model equation, which is accurate to 1 or 2%:

T = 623.2967E-6 (N) + 0.021577 [4]

where T is the overhead per function call and N is the number of list elements. As with the case for
matrices above, we can find a function to calculate the break-even point in terms of the number of
function calls, and the number of list element accesses made by the function. It is, in fact, the same
function with different constants, that is

Nc
Na

= Tar−Tav
Tcv−Tcr

where

Nc = the number of function calls
Na = the number of list element accesses in the function

Tar = time required to access an element by reference: expr(list_name&"[]")
Tav = time required to access an element by value: list[]
Tcv = time required to call the function with the list as a value argument; from [4] above
Tcr = time required to call the function with the list argument by name

Tar and Tav are functions of the size of the list, as well as which element of the list is accessed. These
functions estimate the mean execution time for a single list element:

Tar(N) = 23.0918E − 6 $N + 16.948E − 3

Tav(N) = 23.1404E − 6 $N + 10.368E − 3

where N is the number of list elements, so

Tar(N) − Tav(N) = 48.6E − 9 $N + 6.58E − 3

The small N coefficient can be ignored. More timing experiments give

Tcr = 16.9 mS

So the equation simplifies to [5]
Nc
Na

= 6.58 mS
Tcv−16.9 mS

4

For example, for a list of 100 elements, equation [4] gives Tcv = 83.91 mS. If three elements are
accessed each function call (Na = 3), then Nc is 0.29, which means that the reference method is
always faster. If all 100 elements are accessed each call (Na = 100), then Nc = 9.8, which means that
the reference method will be faster when the function is called at least 10 times.

I mentioned above that the element access time also depends on the size of the list. For a list
consisting of 250 elements, it takes about 16 mS to access element [1], 22 mS for element [125], and
28 mS for element [250]. This is substantial variation, which means that the mean timing results above
apply only if the probabilities of accessing any particular elements are equal. If you know that your
application tends to access elements at a particular list index, you need to account for that in the
break-even analysis.

Execution time data for matrix element accesses

This section shows the test data for matrix element access times. All times are for a TI-92 Plus, HW2,
AMS 2.05. The test matrices are created with randmat(), so the matrix elements are floating point
integers. The mode settings for the tests are RAD and APPROX.

Table 1 shows the time required to access a single matrix element when the matrix indices are
constants, for example, matrix[1,1]. The test data shows that the overhead to access a matrix element
with the reference method (by indirection) is about 5.3 mS. The data also shows the access time
variation with respect to the size of the matrix, and the element's position in the matrix.

Table 1
Matrix element access time, constant indices

5.538.232.7[20,20]
5.533.327.8[15,15]
5.428.222.8[10,10]
5.723.417.7[5,5]
5.219.414.2[1,1]20 rows, 20 columns

5.224.519.3[10,10]
5.121.816.7[5,5]
4.919.214.3[1,1]10 rows, 10 columns

Reference method
overhead
Tar - Tav

Access time Tar,
reference method

(mS)

Access time Tav,
value method

(mS)

Element
accessedMatrix dimensions

Table 2 shows the time required to access a matrix element when the indices are local variables, for
example, matrix[m1,m2]. The data shows that it takes slightly longer to access an element with
variable indices, but the overhead for indirect access is about the same, at a mean of 5.8 mS.

5

Table 2
Matrix element access time, variable indices

6.040.234.2[20,20]
5.835.329.5[15,15]
6.030.224.2[10,10]
5.725.219.5[5,5]
5.821.315.5[1,1]20 rows, 20 columns

5.626.220.6[10,10]
5.823.717.9[5,5]
5.721.215.5[1,1]10 rows, 10 columns

Reference method
overhead
Tar - Tav

Access time Tar,
reference method

(mS)

Access time Tav,
value method

(mS)

Element
accessedMatrix dimensions

Table 3 shows the mean time required to access each element of matrices of various sizes. Element
indices are local variables, and the elements were accessed by value, for example, matrix[m1,m2].

Table 3
Mean matrix element access time, direct access

30.34515
37.9515526.93515
36.4514523.72515
34.9513520.51515
33.2512533.38010
31.7511531.07010
30.5510530.96010
29.159526.85010
27.458524.94010
35.4108022.63010
26.057520.32010
32.9107018.21010
25.056532.41555
30.3106031.31455
23.655530.11355
27.7105028.91255
21.954527.91155
34.0204027.01055
25.2104025.9955
21.253525.0855
30.0203023.6755
23.8103022.5655
19.152521.4555
29.3302020.9455
25.5202019.7355
21.5102018.9255

Mean access time,
single element (mS)

Matrix
columns

Matrix
rows

Mean access time,
single element (mS)

Matrix
columns

Matrix
rows

6

The access time in Table 3 can be estimated with this model equation:

Tav = a + bNr + cNc + dNcNr

where

Nr = number of matrix rows Nc = number of matrix columns

a = 15.7766 E-3 c = -754.840 E-9
b = 33.9161 E-8 d = 21.2832 E-6

This model equation has a maximum relative error of about 6.7%, but the RMS error is about 1.5%, so
it may be useful to estimate access times for matrices not shown in the table. The graph below shows
the points used to generate the model equation, which are the points from table 3.

Sample points

Number of rows

0 20 40 60 80 10
0

12
0

14
0

16
0

N
um

be
r

of
 c

ol
um

ns

0

20

40

60

80

100

120

140

160

Table 4 shows the mean time to access an element in a few of the matrices from table 3, but using
indirection instead of accessing the elements directly. The indices are local variables. The mean
overhead, compared to direct access, is about 5.7 mS.

7

Table 4
Mean matrix element access time, indirect access

5.742.15145
5.736.35105
5.838.71070
6.231.31040
5.835.22525
5.824.9525
6.627.21515
5.336.47010
5.530.44010
5.636.91455
5.632.61055
5.023.8255

Indirect access
overhead (mS)

Mean acces time,
single element (mS)

Matrix
Columns

Matrix
Row

8

